Author: A. Uglanov
Publisher: Springer Science & Business Media
ISBN: 9401596220
Category : Mathematics
Languages : en
Pages : 280
Book Description
It seems hard to believe, but mathematicians were not interested in integration problems on infinite-dimensional nonlinear structures up to 70s of our century. At least the author is not aware of any publication concerning this theme, although as early as 1967 L. Gross mentioned that the analysis on infinite dimensional manifolds is a field of research with rather rich opportunities in his classical work [2. This prediction was brilliantly confirmed afterwards, but we shall return to this later on. In those days the integration theory in infinite dimensional linear spaces was essentially developed in the heuristic works of RP. Feynman [1], I. M. Gelfand, A. M. Yaglom [1]). The articles of J. Eells [1], J. Eells and K. D. Elworthy [1], H. -H. Kuo [1], V. Goodman [1], where the contraction of a Gaussian measure on a hypersurface, in particular, was built and the divergence theorem (the Gauss-Ostrogradskii formula) was proved, appeared only in the beginning of the 70s. In this case a Gaussian specificity was essential and it was even pointed out in a later monograph of H. -H. Kuo [3] that the surface measure for the non-Gaussian case construction problem is not simple and has not yet been solved. A. V. Skorokhod [1] and the author [6,10] offered different approaches to such a construction. Some other approaches were offered later by Yu. L. Daletskii and B. D. Maryanin [1], O. G. Smolyanov [6], N. V.
Integration on Infinite-Dimensional Surfaces and Its Applications
Author: A. Uglanov
Publisher: Springer Science & Business Media
ISBN: 9401596220
Category : Mathematics
Languages : en
Pages : 280
Book Description
It seems hard to believe, but mathematicians were not interested in integration problems on infinite-dimensional nonlinear structures up to 70s of our century. At least the author is not aware of any publication concerning this theme, although as early as 1967 L. Gross mentioned that the analysis on infinite dimensional manifolds is a field of research with rather rich opportunities in his classical work [2. This prediction was brilliantly confirmed afterwards, but we shall return to this later on. In those days the integration theory in infinite dimensional linear spaces was essentially developed in the heuristic works of RP. Feynman [1], I. M. Gelfand, A. M. Yaglom [1]). The articles of J. Eells [1], J. Eells and K. D. Elworthy [1], H. -H. Kuo [1], V. Goodman [1], where the contraction of a Gaussian measure on a hypersurface, in particular, was built and the divergence theorem (the Gauss-Ostrogradskii formula) was proved, appeared only in the beginning of the 70s. In this case a Gaussian specificity was essential and it was even pointed out in a later monograph of H. -H. Kuo [3] that the surface measure for the non-Gaussian case construction problem is not simple and has not yet been solved. A. V. Skorokhod [1] and the author [6,10] offered different approaches to such a construction. Some other approaches were offered later by Yu. L. Daletskii and B. D. Maryanin [1], O. G. Smolyanov [6], N. V.
Publisher: Springer Science & Business Media
ISBN: 9401596220
Category : Mathematics
Languages : en
Pages : 280
Book Description
It seems hard to believe, but mathematicians were not interested in integration problems on infinite-dimensional nonlinear structures up to 70s of our century. At least the author is not aware of any publication concerning this theme, although as early as 1967 L. Gross mentioned that the analysis on infinite dimensional manifolds is a field of research with rather rich opportunities in his classical work [2. This prediction was brilliantly confirmed afterwards, but we shall return to this later on. In those days the integration theory in infinite dimensional linear spaces was essentially developed in the heuristic works of RP. Feynman [1], I. M. Gelfand, A. M. Yaglom [1]). The articles of J. Eells [1], J. Eells and K. D. Elworthy [1], H. -H. Kuo [1], V. Goodman [1], where the contraction of a Gaussian measure on a hypersurface, in particular, was built and the divergence theorem (the Gauss-Ostrogradskii formula) was proved, appeared only in the beginning of the 70s. In this case a Gaussian specificity was essential and it was even pointed out in a later monograph of H. -H. Kuo [3] that the surface measure for the non-Gaussian case construction problem is not simple and has not yet been solved. A. V. Skorokhod [1] and the author [6,10] offered different approaches to such a construction. Some other approaches were offered later by Yu. L. Daletskii and B. D. Maryanin [1], O. G. Smolyanov [6], N. V.
Integration on Infinite-Dimensional Surfaces and Its Applications
Author: A. Uglanov
Publisher:
ISBN: 9789401596237
Category :
Languages : en
Pages : 288
Book Description
Publisher:
ISBN: 9789401596237
Category :
Languages : en
Pages : 288
Book Description
Proceedings of the International Conference on Stochastic Analysis and Applications
Author: Sergio Albeverio
Publisher: Springer Science & Business Media
ISBN: 9781402024672
Category : Mathematics
Languages : en
Pages : 364
Book Description
Stochastic analysis is a field of mathematical research having numerous interactions with other domains of mathematics such as partial differential equations, riemannian path spaces, dynamical systems, optimization. It also has many links with applications in engineering, finance, quantum physics, and other fields. This book covers recent and diverse aspects of stochastic and infinite-dimensional analysis. The included papers are written from a variety of standpoints (white noise analysis, Malliavin calculus, quantum stochastic calculus) by the contributors, and provide a broad coverage of the subject. This volume will be useful to graduate students and research mathematicians wishing to get acquainted with recent developments in the field of stochastic analysis.
Publisher: Springer Science & Business Media
ISBN: 9781402024672
Category : Mathematics
Languages : en
Pages : 364
Book Description
Stochastic analysis is a field of mathematical research having numerous interactions with other domains of mathematics such as partial differential equations, riemannian path spaces, dynamical systems, optimization. It also has many links with applications in engineering, finance, quantum physics, and other fields. This book covers recent and diverse aspects of stochastic and infinite-dimensional analysis. The included papers are written from a variety of standpoints (white noise analysis, Malliavin calculus, quantum stochastic calculus) by the contributors, and provide a broad coverage of the subject. This volume will be useful to graduate students and research mathematicians wishing to get acquainted with recent developments in the field of stochastic analysis.
Integration on Infinite-Dimensional Surfaces and Its Applications
Author: A. V. Uglanov
Publisher: Springer Science & Business Media
ISBN: 9780792361336
Category : Mathematics
Languages : en
Pages : 294
Book Description
This book presents the theory of integration over surfaces in abstract topological vector space. Applications of the theory in different fields, such as infinite dimensional distributions and differential equations (including boundary value problems), stochastic processes, approximation of functions, and calculus of variation on a Banach space, are treated in detail. Audience: This book will be of interest to specialists in functional analysis, and those whose work involves measure and integration, probability theory and stochastic processes, partial differential equations and mathematical physics.
Publisher: Springer Science & Business Media
ISBN: 9780792361336
Category : Mathematics
Languages : en
Pages : 294
Book Description
This book presents the theory of integration over surfaces in abstract topological vector space. Applications of the theory in different fields, such as infinite dimensional distributions and differential equations (including boundary value problems), stochastic processes, approximation of functions, and calculus of variation on a Banach space, are treated in detail. Audience: This book will be of interest to specialists in functional analysis, and those whose work involves measure and integration, probability theory and stochastic processes, partial differential equations and mathematical physics.
High Dimensional Probability III
Author: Joergen Hoffmann-Joergensen
Publisher: Birkhäuser
ISBN: 3034880596
Category : Mathematics
Languages : en
Pages : 343
Book Description
The title High Dimensional Probability is used to describe the many tributaries of research on Gaussian processes and probability in Banach spaces that started in the early 1970s. Many of the problems that motivated researchers at that time were solved. But the powerful new tools created for their solution turned out to be applicable to other important areas of probability. They led to significant advances in the study of empirical processes and other topics in theoretical statistics and to a new approach to the study of aspects of Lévy processes and Markov processes in general. The papers in this book reflect these broad categories. The volume thus will be a valuable resource for postgraduates and reseachers in probability theory and mathematical statistics.
Publisher: Birkhäuser
ISBN: 3034880596
Category : Mathematics
Languages : en
Pages : 343
Book Description
The title High Dimensional Probability is used to describe the many tributaries of research on Gaussian processes and probability in Banach spaces that started in the early 1970s. Many of the problems that motivated researchers at that time were solved. But the powerful new tools created for their solution turned out to be applicable to other important areas of probability. They led to significant advances in the study of empirical processes and other topics in theoretical statistics and to a new approach to the study of aspects of Lévy processes and Markov processes in general. The papers in this book reflect these broad categories. The volume thus will be a valuable resource for postgraduates and reseachers in probability theory and mathematical statistics.
Handbook of the Geometry of Banach Spaces
Author: William B. Johnson
Publisher: Elsevier
ISBN: 9780444513052
Category : Banach spaces
Languages : en
Pages : 880
Book Description
The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Publisher: Elsevier
ISBN: 9780444513052
Category : Banach spaces
Languages : en
Pages : 880
Book Description
The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Differentiable Measures and the Malliavin Calculus
Author: Vladimir Igorevich Bogachev
Publisher: American Mathematical Soc.
ISBN: 082184993X
Category : Mathematics
Languages : en
Pages : 506
Book Description
This book provides the reader with the principal concepts and results related to differential properties of measures on infinite dimensional spaces. In the finite dimensional case such properties are described in terms of densities of measures with respect to Lebesgue measure. In the infinite dimensional case new phenomena arise. For the first time a detailed account is given of the theory of differentiable measures, initiated by S. V. Fomin in the 1960s; since then the method has found many various important applications. Differentiable properties are described for diverse concrete classes of measures arising in applications, for example, Gaussian, convex, stable, Gibbsian, and for distributions of random processes. Sobolev classes for measures on finite and infinite dimensional spaces are discussed in detail. Finally, we present the main ideas and results of the Malliavin calculus--a powerful method to study smoothness properties of the distributions of nonlinear functionals on infinite dimensional spaces with measures. The target readership includes mathematicians and physicists whose research is related to measures on infinite dimensional spaces, distributions of random processes, and differential equations in infinite dimensional spaces. The book includes an extensive bibliography on the subject.
Publisher: American Mathematical Soc.
ISBN: 082184993X
Category : Mathematics
Languages : en
Pages : 506
Book Description
This book provides the reader with the principal concepts and results related to differential properties of measures on infinite dimensional spaces. In the finite dimensional case such properties are described in terms of densities of measures with respect to Lebesgue measure. In the infinite dimensional case new phenomena arise. For the first time a detailed account is given of the theory of differentiable measures, initiated by S. V. Fomin in the 1960s; since then the method has found many various important applications. Differentiable properties are described for diverse concrete classes of measures arising in applications, for example, Gaussian, convex, stable, Gibbsian, and for distributions of random processes. Sobolev classes for measures on finite and infinite dimensional spaces are discussed in detail. Finally, we present the main ideas and results of the Malliavin calculus--a powerful method to study smoothness properties of the distributions of nonlinear functionals on infinite dimensional spaces with measures. The target readership includes mathematicians and physicists whose research is related to measures on infinite dimensional spaces, distributions of random processes, and differential equations in infinite dimensional spaces. The book includes an extensive bibliography on the subject.
Measure Theory
Author: Vladimir I. Bogachev
Publisher: Springer Science & Business Media
ISBN: 3540345140
Category : Mathematics
Languages : en
Pages : 1075
Book Description
This book giving an exposition of the foundations of modern measure theory offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course, and, finally, more specialized topics partly covered by more than 850 exercises with detailed hints and references. Bibliographical comments and an extensive bibliography with 2000 works covering more than a century are provided.
Publisher: Springer Science & Business Media
ISBN: 3540345140
Category : Mathematics
Languages : en
Pages : 1075
Book Description
This book giving an exposition of the foundations of modern measure theory offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course, and, finally, more specialized topics partly covered by more than 850 exercises with detailed hints and references. Bibliographical comments and an extensive bibliography with 2000 works covering more than a century are provided.
Fluids and Waves
Author: Fernanda Botelho
Publisher: American Mathematical Soc.
ISBN: 0821842471
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume contains a series of articles on wave phenomena and fluid dynamics, highlighting recent advances in these two areas of mathematics. The collection is based on lectures presented at the conference Fluids and Waves--Recent Trends in Applied Analysis and features a rich spectrum of mathematical techniques in analysis and applications to engineering, neuroscience, physics, and biology. The mathematical topics discussed range from partial differential equations, dynamical systems and stochastic processes, to areas of classical analysis. This volume is intended as an introduction to major topics of interest and state-of-the-art analytical research in wave motion and fluid flows.
Publisher: American Mathematical Soc.
ISBN: 0821842471
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume contains a series of articles on wave phenomena and fluid dynamics, highlighting recent advances in these two areas of mathematics. The collection is based on lectures presented at the conference Fluids and Waves--Recent Trends in Applied Analysis and features a rich spectrum of mathematical techniques in analysis and applications to engineering, neuroscience, physics, and biology. The mathematical topics discussed range from partial differential equations, dynamical systems and stochastic processes, to areas of classical analysis. This volume is intended as an introduction to major topics of interest and state-of-the-art analytical research in wave motion and fluid flows.
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 1006
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 1006
Book Description