Innovations in NLP

Innovations in NLP PDF Author: L Michael Hall
Publisher: Crown House Publishing
ISBN: 1845907752
Category : Self-Help
Languages : en
Pages : 401

Get Book Here

Book Description
This long awaited book brings together some of the most recent innovations and applications of the traditional NLP model. Each chapter describes a new model or application and contains step by step instructions or a case study on how and when to apply it. For NLP Practitioners it provides an outstanding collection of new tools and ideas to take their practice forward.

Innovations in NLP

Innovations in NLP PDF Author: L Michael Hall
Publisher: Crown House Publishing
ISBN: 1845907752
Category : Self-Help
Languages : en
Pages : 401

Get Book Here

Book Description
This long awaited book brings together some of the most recent innovations and applications of the traditional NLP model. Each chapter describes a new model or application and contains step by step instructions or a case study on how and when to apply it. For NLP Practitioners it provides an outstanding collection of new tools and ideas to take their practice forward.

Natural Language Processing with SAS

Natural Language Processing with SAS PDF Author:
Publisher:
ISBN: 9781952363184
Category :
Languages : en
Pages : 74

Get Book Here

Book Description
Natural Language Processing (NLP) is a branch of artificial intelligence that helps computers understand, interpret, and emulate written or spoken human language. NLP draws from many disciplines including human-generated linguistic rules, machine learning, and deep learning to fill the gap between human communication and machine understanding. The papers included in this special collection demonstrate how NLP can be used to scale the human act of reading, organizing, and quantifying text data.

Synergizing AI, DevOps, and Deep Learning: Integrating NLP for Next-Generation Innovations

Synergizing AI, DevOps, and Deep Learning: Integrating NLP for Next-Generation Innovations PDF Author: Venkata Mohit Tamanampudi
Publisher: Libertatem Media Private Limited
ISBN: 8197138257
Category : Computers
Languages : en
Pages : 207

Get Book Here

Book Description
This book explores the powerful intersection of Artificial Intelligence (AI), DevOps, Natural Language Processing (NLP), and Deep Learning, focusing on how these technologies can be combined to build more efficient, automated, and intelligent systems. It delves into the principles behind AI and DevOps, offering a roadmap for integrating these practices to enable continuous delivery and automation of machine learning models. NLP is highlighted as a critical technology that bridges human-computer interaction, while Deep Learning provides the backbone for powerful, data-driven decision-making systems. Readers will gain practical insights into building scalable systems, utilizing AI-driven DevOps pipelines, and integrating NLP for developing smart, interactive applications. The book will provide real-world examples and step-by-step guides for adopting cutting-edge AI/ML methodologies with the speed and agility of DevOps processes, making it an essential read for data scientists, AI engineers, and DevOps practitioners.

Introduction to Natural Language Processing

Introduction to Natural Language Processing PDF Author: Jacob Eisenstein
Publisher: MIT Press
ISBN: 0262042843
Category : Computers
Languages : en
Pages : 535

Get Book Here

Book Description
A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.

Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing PDF Author: Stephan Raaijmakers
Publisher: Simon and Schuster
ISBN: 1638353999
Category : Computers
Languages : en
Pages : 294

Get Book Here

Book Description
Explore the most challenging issues of natural language processing, and learn how to solve them with cutting-edge deep learning! Inside Deep Learning for Natural Language Processing you’ll find a wealth of NLP insights, including: An overview of NLP and deep learning One-hot text representations Word embeddings Models for textual similarity Sequential NLP Semantic role labeling Deep memory-based NLP Linguistic structure Hyperparameters for deep NLP Deep learning has advanced natural language processing to exciting new levels and powerful new applications! For the first time, computer systems can achieve "human" levels of summarizing, making connections, and other tasks that require comprehension and context. Deep Learning for Natural Language Processing reveals the groundbreaking techniques that make these innovations possible. Stephan Raaijmakers distills his extensive knowledge into useful best practices, real-world applications, and the inner workings of top NLP algorithms. About the technology Deep learning has transformed the field of natural language processing. Neural networks recognize not just words and phrases, but also patterns. Models infer meaning from context, and determine emotional tone. Powerful deep learning-based NLP models open up a goldmine of potential uses. About the book Deep Learning for Natural Language Processing teaches you how to create advanced NLP applications using Python and the Keras deep learning library. You’ll learn to use state-of the-art tools and techniques including BERT and XLNET, multitask learning, and deep memory-based NLP. Fascinating examples give you hands-on experience with a variety of real world NLP applications. Plus, the detailed code discussions show you exactly how to adapt each example to your own uses! What's inside Improve question answering with sequential NLP Boost performance with linguistic multitask learning Accurately interpret linguistic structure Master multiple word embedding techniques About the reader For readers with intermediate Python skills and a general knowledge of NLP. No experience with deep learning is required. About the author Stephan Raaijmakers is professor of Communicative AI at Leiden University and a senior scientist at The Netherlands Organization for Applied Scientific Research (TNO). Table of Contents PART 1 INTRODUCTION 1 Deep learning for NLP 2 Deep learning and language: The basics 3 Text embeddings PART 2 DEEP NLP 4 Textual similarity 5 Sequential NLP 6 Episodic memory for NLP PART 3 ADVANCED TOPICS 7 Attention 8 Multitask learning 9 Transformers 10 Applications of Transformers: Hands-on with BERT

Natural Language Processing in Action

Natural Language Processing in Action PDF Author: Hannes Hapke
Publisher: Simon and Schuster
ISBN: 1638356890
Category : Computers
Languages : en
Pages : 798

Get Book Here

Book Description
Summary Natural Language Processing in Action is your guide to creating machines that understand human language using the power of Python with its ecosystem of packages dedicated to NLP and AI. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Recent advances in deep learning empower applications to understand text and speech with extreme accuracy. The result? Chatbots that can imitate real people, meaningful resume-to-job matches, superb predictive search, and automatically generated document summaries—all at a low cost. New techniques, along with accessible tools like Keras and TensorFlow, make professional-quality NLP easier than ever before. About the Book Natural Language Processing in Action is your guide to building machines that can read and interpret human language. In it, you'll use readily available Python packages to capture the meaning in text and react accordingly. The book expands traditional NLP approaches to include neural networks, modern deep learning algorithms, and generative techniques as you tackle real-world problems like extracting dates and names, composing text, and answering free-form questions. What's inside Some sentences in this book were written by NLP! Can you guess which ones? Working with Keras, TensorFlow, gensim, and scikit-learn Rule-based and data-based NLP Scalable pipelines About the Reader This book requires a basic understanding of deep learning and intermediate Python skills. About the Author Hobson Lane, Cole Howard, and Hannes Max Hapke are experienced NLP engineers who use these techniques in production. Table of Contents PART 1 - WORDY MACHINES Packets of thought (NLP overview) Build your vocabulary (word tokenization) Math with words (TF-IDF vectors) Finding meaning in word counts (semantic analysis) PART 2 - DEEPER LEARNING (NEURAL NETWORKS) Baby steps with neural networks (perceptrons and backpropagation) Reasoning with word vectors (Word2vec) Getting words in order with convolutional neural networks (CNNs) Loopy (recurrent) neural networks (RNNs) Improving retention with long short-term memory networks Sequence-to-sequence models and attention PART 3 - GETTING REAL (REAL-WORLD NLP CHALLENGES) Information extraction (named entity extraction and question answering) Getting chatty (dialog engines) Scaling up (optimization, parallelization, and batch processing)

Practical Natural Language Processing

Practical Natural Language Processing PDF Author: Sowmya Vajjala
Publisher: O'Reilly Media
ISBN: 149205402X
Category : Computers
Languages : en
Pages : 455

Get Book Here

Book Description
Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective

Natural Language Processing In Healthcare

Natural Language Processing In Healthcare PDF Author: Satya Ranjan Dash
Publisher: CRC Press
ISBN: 1000624684
Category : Computers
Languages : en
Pages : 261

Get Book Here

Book Description
Natural Language Processing In Healthcare: A Special Focus on Low Resource Languages covers the theoretical and practical aspects as well as ethical and social implications of NLP in healthcare. It showcases the latest research and developments contributing to the rising awareness and importance of maintaining linguistic diversity. The book goes on to present current advances and scenarios based on solutions in healthcare and low resource languages and identifies the major challenges and opportunities that will impact NLP in clinical practice and health studies.

Natural Language Processing in Artificial Intelligence

Natural Language Processing in Artificial Intelligence PDF Author: Brojo Kishore Mishra
Publisher: CRC Press
ISBN: 1000711315
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.

Applied Natural Language Processing in the Enterprise

Applied Natural Language Processing in the Enterprise PDF Author: Ankur A. Patel
Publisher: "O'Reilly Media, Inc."
ISBN: 1492062545
Category : Computers
Languages : en
Pages : 336

Get Book Here

Book Description
NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production