Author: Odile Pons
Publisher: World Scientific
ISBN: 9813144009
Category : Mathematics
Languages : en
Pages : 309
Book Description
The book is aimed at graduate students and researchers with basic knowledge of Probability and Integration Theory. It introduces classical inequalities in vector and functional spaces with applications to probability. It also develops new extensions of the analytical inequalities, with sharper bounds and generalizations to the sum or the supremum of random variables, to martingales and to transformed Brownian motions. The proofs of many new results are presented in great detail. Original tools are developed for spatial point processes and stochastic integration with respect to local martingales in the plane.This second edition covers properties of random variables and time continuous local martingales with a discontinuous predictable compensator, with exponential inequalities and new inequalities for their maximum variable and their p-variations. A chapter on stochastic calculus presents the exponential sub-martingales developed for stationary processes and their properties. Another chapter devoted itself to the renewal theory of processes and to semi-Markovian processes, branching processes and shock processes. The Chapman-Kolmogorov equations for strong semi-Markovian processes provide equations for their hitting times in a functional setting which extends the exponential properties of the Markovian processes.
Inequalities In Analysis And Probability (Second Edition)
Author: Odile Pons
Publisher: World Scientific
ISBN: 9813144009
Category : Mathematics
Languages : en
Pages : 309
Book Description
The book is aimed at graduate students and researchers with basic knowledge of Probability and Integration Theory. It introduces classical inequalities in vector and functional spaces with applications to probability. It also develops new extensions of the analytical inequalities, with sharper bounds and generalizations to the sum or the supremum of random variables, to martingales and to transformed Brownian motions. The proofs of many new results are presented in great detail. Original tools are developed for spatial point processes and stochastic integration with respect to local martingales in the plane.This second edition covers properties of random variables and time continuous local martingales with a discontinuous predictable compensator, with exponential inequalities and new inequalities for their maximum variable and their p-variations. A chapter on stochastic calculus presents the exponential sub-martingales developed for stationary processes and their properties. Another chapter devoted itself to the renewal theory of processes and to semi-Markovian processes, branching processes and shock processes. The Chapman-Kolmogorov equations for strong semi-Markovian processes provide equations for their hitting times in a functional setting which extends the exponential properties of the Markovian processes.
Publisher: World Scientific
ISBN: 9813144009
Category : Mathematics
Languages : en
Pages : 309
Book Description
The book is aimed at graduate students and researchers with basic knowledge of Probability and Integration Theory. It introduces classical inequalities in vector and functional spaces with applications to probability. It also develops new extensions of the analytical inequalities, with sharper bounds and generalizations to the sum or the supremum of random variables, to martingales and to transformed Brownian motions. The proofs of many new results are presented in great detail. Original tools are developed for spatial point processes and stochastic integration with respect to local martingales in the plane.This second edition covers properties of random variables and time continuous local martingales with a discontinuous predictable compensator, with exponential inequalities and new inequalities for their maximum variable and their p-variations. A chapter on stochastic calculus presents the exponential sub-martingales developed for stationary processes and their properties. Another chapter devoted itself to the renewal theory of processes and to semi-Markovian processes, branching processes and shock processes. The Chapman-Kolmogorov equations for strong semi-Markovian processes provide equations for their hitting times in a functional setting which extends the exponential properties of the Markovian processes.
Analysis And Differential Equations (Second Edition)
Author: Odile Pons
Publisher: World Scientific
ISBN: 9811268584
Category : Mathematics
Languages : en
Pages : 305
Book Description
The book presents advanced methods of integral calculus and optimization, the classical theory of ordinary and partial differential equations and systems of dynamical equations. It provides explicit solutions of linear and nonlinear differential equations, and implicit solutions with discrete approximations.The main changes of this second edition are: the addition of theoretical sections proving the existence and the unicity of the solutions for linear differential equations on real and complex spaces and for nonlinear differential equations defined by locally Lipschitz functions of the derivatives, as well as the approximations of nonlinear parabolic, elliptic, and hyperbolic equations with locally differentiable operators which allow to prove the existence of their solutions; furthermore, the behavior of the solutions of differential equations under small perturbations of the initial condition or of the differential operators is studied.
Publisher: World Scientific
ISBN: 9811268584
Category : Mathematics
Languages : en
Pages : 305
Book Description
The book presents advanced methods of integral calculus and optimization, the classical theory of ordinary and partial differential equations and systems of dynamical equations. It provides explicit solutions of linear and nonlinear differential equations, and implicit solutions with discrete approximations.The main changes of this second edition are: the addition of theoretical sections proving the existence and the unicity of the solutions for linear differential equations on real and complex spaces and for nonlinear differential equations defined by locally Lipschitz functions of the derivatives, as well as the approximations of nonlinear parabolic, elliptic, and hyperbolic equations with locally differentiable operators which allow to prove the existence of their solutions; furthermore, the behavior of the solutions of differential equations under small perturbations of the initial condition or of the differential operators is studied.
Concentration of Measure Inequalities in Information Theory, Communications, and Coding
Author: Maxim Raginsky
Publisher:
ISBN: 9781601989062
Category : Computers
Languages : en
Pages : 256
Book Description
Concentration of Measure Inequalities in Information Theory, Communications, and Coding focuses on some of the key modern mathematical tools that are used for the derivation of concentration inequalities, on their links to information theory, and on their various applications to communications and coding.
Publisher:
ISBN: 9781601989062
Category : Computers
Languages : en
Pages : 256
Book Description
Concentration of Measure Inequalities in Information Theory, Communications, and Coding focuses on some of the key modern mathematical tools that are used for the derivation of concentration inequalities, on their links to information theory, and on their various applications to communications and coding.
Some Topics in Probability and Analysis
Author: R. F. Gundy
Publisher: American Mathematical Soc.
ISBN: 9780821889145
Category : Mathematics
Languages : en
Pages : 60
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821889145
Category : Mathematics
Languages : en
Pages : 60
Book Description
Inequalities
Author: Ingram Olkin
Publisher: Academic Press
ISBN: 0080959970
Category : Mathematics
Languages : en
Pages : 590
Book Description
Although they play a fundamental role in nearly all branches of mathematics, inequalities are usually obtained by ad hoc methods rather than as consequences of some underlying "theory of inequalities." For certain kinds of inequalities, the notion of majorization leads to such a theory that is sometimes extremely useful and powerful for deriving inequalities. Moreover, the derivation of an inequality by methods of majorization is often very helpful both for providing a deeper understanding and for suggesting natural generalizations.Anyone wishing to employ majorization as a tool in applications can make use of the theorems; for the most part, their statements are easily understood.
Publisher: Academic Press
ISBN: 0080959970
Category : Mathematics
Languages : en
Pages : 590
Book Description
Although they play a fundamental role in nearly all branches of mathematics, inequalities are usually obtained by ad hoc methods rather than as consequences of some underlying "theory of inequalities." For certain kinds of inequalities, the notion of majorization leads to such a theory that is sometimes extremely useful and powerful for deriving inequalities. Moreover, the derivation of an inequality by methods of majorization is often very helpful both for providing a deeper understanding and for suggesting natural generalizations.Anyone wishing to employ majorization as a tool in applications can make use of the theorems; for the most part, their statements are easily understood.
Inequalities
Author: G. H. Hardy
Publisher: Cambridge University Press
ISBN: 9780521358804
Category : Mathematics
Languages : en
Pages : 344
Book Description
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and lucidly both the statement and proof of all the standard inequalities of analysis. The authors were well-known for their powers of exposition and made this subject accessible to a wide audience of mathematicians.
Publisher: Cambridge University Press
ISBN: 9780521358804
Category : Mathematics
Languages : en
Pages : 344
Book Description
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and lucidly both the statement and proof of all the standard inequalities of analysis. The authors were well-known for their powers of exposition and made this subject accessible to a wide audience of mathematicians.
Analysis and Probability
Author: Aurel Spataru
Publisher: Newnes
ISBN: 0124017274
Category : Mathematics
Languages : en
Pages : 459
Book Description
Probability theory is a rapidly expanding field and is used in many areas of science and technology. Beginning from a basis of abstract analysis, this mathematics book develops the knowledge needed for advanced students to develop a complex understanding of probability. The first part of the book systematically presents concepts and results from analysis before embarking on the study of probability theory. The initial section will also be useful for those interested in topology, measure theory, real analysis and functional analysis. The second part of the book presents the concepts, methodology and fundamental results of probability theory. Exercises are included throughout the text, not just at the end, to teach each concept fully as it is explained, including presentations of interesting extensions of the theory. The complete and detailed nature of the book makes it ideal as a reference book or for self-study in probability and related fields. - Covers a wide range of subjects including f-expansions, Fuk-Nagaev inequalities and Markov triples. - Provides multiple clearly worked exercises with complete proofs. - Guides readers through examples so they can understand and write research papers independently.
Publisher: Newnes
ISBN: 0124017274
Category : Mathematics
Languages : en
Pages : 459
Book Description
Probability theory is a rapidly expanding field and is used in many areas of science and technology. Beginning from a basis of abstract analysis, this mathematics book develops the knowledge needed for advanced students to develop a complex understanding of probability. The first part of the book systematically presents concepts and results from analysis before embarking on the study of probability theory. The initial section will also be useful for those interested in topology, measure theory, real analysis and functional analysis. The second part of the book presents the concepts, methodology and fundamental results of probability theory. Exercises are included throughout the text, not just at the end, to teach each concept fully as it is explained, including presentations of interesting extensions of the theory. The complete and detailed nature of the book makes it ideal as a reference book or for self-study in probability and related fields. - Covers a wide range of subjects including f-expansions, Fuk-Nagaev inequalities and Markov triples. - Provides multiple clearly worked exercises with complete proofs. - Guides readers through examples so they can understand and write research papers independently.
Inequalities: A Journey into Linear Analysis
Author: D. J. H. Garling
Publisher: Cambridge University Press
ISBN: 1139465147
Category : Mathematics
Languages : en
Pages : 347
Book Description
This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis.
Publisher: Cambridge University Press
ISBN: 1139465147
Category : Mathematics
Languages : en
Pages : 347
Book Description
This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis.
Difference Equations and Inequalities
Author: Ravi P. Agarwal
Publisher: CRC Press
ISBN: 9781420027020
Category : Mathematics
Languages : en
Pages : 1010
Book Description
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and
Publisher: CRC Press
ISBN: 9781420027020
Category : Mathematics
Languages : en
Pages : 1010
Book Description
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and
The Collected Works of Wassily Hoeffding
Author: Wassily Hoeffding
Publisher: Springer Science & Business Media
ISBN: 1461208653
Category : Mathematics
Languages : en
Pages : 653
Book Description
It has been a rare privilege to assemble this volume of Wassily Hoeffding's Collected Works. Wassily was, variously, a teacher, supervisor and colleague to us, and his work has had a profound influence on our own. Yet this would not be sufficient reason to publish his collected works. The additional and overwhelmingly compelling justification comes from the fun damental nature of his contributions to Statistics and Probability. Not only were his ideas original, and far-reaching in their implications; Wassily de veloped them so completely and elegantly in his papers that they are still cited as prime references up to half a century later. However, three of his earliest papers are cited rarely, if ever. These include material from his doctoral dissertation. They were written in German, and two of them were published in relatively obscure series. Rather than reprint the original articles, we have chosen to have them translated into English. These trans lations appear in this book, making Wassily's earliest research available to a wide audience for the first time. All other articles (including those of his contributions to Mathematical Reviews which go beyond a simple reporting of contents of articles) have been reproduced as they appeared, together with annotations and corrections made by Wassily on some private copies of his papers. Preceding these articles are three review papers which dis cuss the . impact of his work in some of the areas where he made major contributions.
Publisher: Springer Science & Business Media
ISBN: 1461208653
Category : Mathematics
Languages : en
Pages : 653
Book Description
It has been a rare privilege to assemble this volume of Wassily Hoeffding's Collected Works. Wassily was, variously, a teacher, supervisor and colleague to us, and his work has had a profound influence on our own. Yet this would not be sufficient reason to publish his collected works. The additional and overwhelmingly compelling justification comes from the fun damental nature of his contributions to Statistics and Probability. Not only were his ideas original, and far-reaching in their implications; Wassily de veloped them so completely and elegantly in his papers that they are still cited as prime references up to half a century later. However, three of his earliest papers are cited rarely, if ever. These include material from his doctoral dissertation. They were written in German, and two of them were published in relatively obscure series. Rather than reprint the original articles, we have chosen to have them translated into English. These trans lations appear in this book, making Wassily's earliest research available to a wide audience for the first time. All other articles (including those of his contributions to Mathematical Reviews which go beyond a simple reporting of contents of articles) have been reproduced as they appeared, together with annotations and corrections made by Wassily on some private copies of his papers. Preceding these articles are three review papers which dis cuss the . impact of his work in some of the areas where he made major contributions.