Author: Narendra Tuteja
Publisher: Wiley-Blackwell
ISBN: 9783527632930
Category : Science
Languages : en
Pages : 500
Book Description
Abiotic stress, such as high salinity and drought is the most common challenge for sustainable food production in large parts of the world, in particular in emerging countries. The ongoing and expected global climate change will further increase these challenges in many areas, making improved stress resistance of crops a key topic for the 21st Century. Proteomics, genomics and metabolomics are methods allowing for the rapid and complete analysis of the complete physiology of crop plants. This knowledge in turn, is the prerequisite for improvements of crop resistance against abiotic stress through genetic engineering or traditional breeding methods. Improving Crop Resistance to Abiotic Stress is a double-volume, up-to-date overview of current progress in improving crop quality and quantity using modern methods such as proteomics, genomics and metabolomics. With this particular emphasis on genetic engineering, this text focuses on crop improvement under adverse conditions, paying special attention to such staple crops as rice, maize, and pulses. It includes an excellent mix of specific examples, such as the creation of nutritionally-fortified rice and a discussion of the political and economic implications of genetically engineered food. The result is a must-have hands-on guide, ideally suited for Agricultural Scientists, Students of Agriculture, Plant Physiologists, Plant Breeders, Botanists and Biotechnologists. Sections include: PART I Climate Change and Abiotic Stress Factors PART II Methods to Improve Crop Productivity PART III Species-Specific Case Studies: Graminoids, Leguminosae, Rosaceae
Improving Crop Resistance to Abiotic Stress
Author: Narendra Tuteja
Publisher: Wiley-Blackwell
ISBN: 9783527632930
Category : Science
Languages : en
Pages : 500
Book Description
Abiotic stress, such as high salinity and drought is the most common challenge for sustainable food production in large parts of the world, in particular in emerging countries. The ongoing and expected global climate change will further increase these challenges in many areas, making improved stress resistance of crops a key topic for the 21st Century. Proteomics, genomics and metabolomics are methods allowing for the rapid and complete analysis of the complete physiology of crop plants. This knowledge in turn, is the prerequisite for improvements of crop resistance against abiotic stress through genetic engineering or traditional breeding methods. Improving Crop Resistance to Abiotic Stress is a double-volume, up-to-date overview of current progress in improving crop quality and quantity using modern methods such as proteomics, genomics and metabolomics. With this particular emphasis on genetic engineering, this text focuses on crop improvement under adverse conditions, paying special attention to such staple crops as rice, maize, and pulses. It includes an excellent mix of specific examples, such as the creation of nutritionally-fortified rice and a discussion of the political and economic implications of genetically engineered food. The result is a must-have hands-on guide, ideally suited for Agricultural Scientists, Students of Agriculture, Plant Physiologists, Plant Breeders, Botanists and Biotechnologists. Sections include: PART I Climate Change and Abiotic Stress Factors PART II Methods to Improve Crop Productivity PART III Species-Specific Case Studies: Graminoids, Leguminosae, Rosaceae
Publisher: Wiley-Blackwell
ISBN: 9783527632930
Category : Science
Languages : en
Pages : 500
Book Description
Abiotic stress, such as high salinity and drought is the most common challenge for sustainable food production in large parts of the world, in particular in emerging countries. The ongoing and expected global climate change will further increase these challenges in many areas, making improved stress resistance of crops a key topic for the 21st Century. Proteomics, genomics and metabolomics are methods allowing for the rapid and complete analysis of the complete physiology of crop plants. This knowledge in turn, is the prerequisite for improvements of crop resistance against abiotic stress through genetic engineering or traditional breeding methods. Improving Crop Resistance to Abiotic Stress is a double-volume, up-to-date overview of current progress in improving crop quality and quantity using modern methods such as proteomics, genomics and metabolomics. With this particular emphasis on genetic engineering, this text focuses on crop improvement under adverse conditions, paying special attention to such staple crops as rice, maize, and pulses. It includes an excellent mix of specific examples, such as the creation of nutritionally-fortified rice and a discussion of the political and economic implications of genetically engineered food. The result is a must-have hands-on guide, ideally suited for Agricultural Scientists, Students of Agriculture, Plant Physiologists, Plant Breeders, Botanists and Biotechnologists. Sections include: PART I Climate Change and Abiotic Stress Factors PART II Methods to Improve Crop Productivity PART III Species-Specific Case Studies: Graminoids, Leguminosae, Rosaceae
Advances in Rice Research for Abiotic Stress Tolerance
Author: Mirza Hasanuzzaman
Publisher: Woodhead Publishing
ISBN: 0128143339
Category : Science
Languages : en
Pages : 988
Book Description
Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world's population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. - Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses - Provides practical insights into a wide range of management and crop improvement practices - Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology
Publisher: Woodhead Publishing
ISBN: 0128143339
Category : Science
Languages : en
Pages : 988
Book Description
Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world's population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. - Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses - Provides practical insights into a wide range of management and crop improvement practices - Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology
Engineering Tolerance in Crop Plants Against Abiotic Stress
Author: Shah Fahad
Publisher: CRC Press
ISBN: 1000462153
Category : Science
Languages : en
Pages : 348
Book Description
Despite significant progress in increasing agricultural production, meeting the changing dietary preferences and increasing food demands of future populations remains a significant challenge. Salinity, drought, water logging, high temperature and toxicity are abiotic stresses that affect the crop yield and production. Tolerance for stress is a important characteristic that plants need to have in order to survive. Identification of proper techniques at a proper time can make it easy for scientists to increase crop productivity and yield. In Engineering Tolerance in Crop Plants against Abiotic Stress we have discussed the possible stresses and their impact on crops and portrayed distinctive abiotic stress tolerance in response to different techniques that can improve the performance of crops. Features of the Book: Provide a state-of-the-art description of the physiological, biochemical, and molecular status of the understanding of abiotic stress in plants. Address factors that threaten future food production and provide potential solution to these factors. Designed to cater to the needs of the students engaged in the field of environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy. New strategies for better crop productivity and yield. Understanding new techniques pointed out in this book will open the possibility of genetic engineering in crop plants with the concomitant improved stress tolerance.
Publisher: CRC Press
ISBN: 1000462153
Category : Science
Languages : en
Pages : 348
Book Description
Despite significant progress in increasing agricultural production, meeting the changing dietary preferences and increasing food demands of future populations remains a significant challenge. Salinity, drought, water logging, high temperature and toxicity are abiotic stresses that affect the crop yield and production. Tolerance for stress is a important characteristic that plants need to have in order to survive. Identification of proper techniques at a proper time can make it easy for scientists to increase crop productivity and yield. In Engineering Tolerance in Crop Plants against Abiotic Stress we have discussed the possible stresses and their impact on crops and portrayed distinctive abiotic stress tolerance in response to different techniques that can improve the performance of crops. Features of the Book: Provide a state-of-the-art description of the physiological, biochemical, and molecular status of the understanding of abiotic stress in plants. Address factors that threaten future food production and provide potential solution to these factors. Designed to cater to the needs of the students engaged in the field of environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy. New strategies for better crop productivity and yield. Understanding new techniques pointed out in this book will open the possibility of genetic engineering in crop plants with the concomitant improved stress tolerance.
Plant Breeding for Abiotic Stress Tolerance
Author: Roberto Fritsche-Neto
Publisher: Springer Science & Business Media
ISBN: 3642305539
Category : Science
Languages : en
Pages : 178
Book Description
The rapid population growth and the increase in the per capita income, especially in the group of emerging countries referred to as BRIC countries (Brazil, Russia, India, China and South Africa) has created huge pressure for the expansion of the agricultural growing area and the crop yields to meet the rising demand. As a result, many areas that have been considered marginal for growing crops, due to their low fertility, drought, salinity, and many other abiotic stresses, have now been incorporated in the production system. Additionally, climate change has brought new challenges to agriculture to produce food, feed, fiber and biofuels. To cope with these new challenges, many plant breeding programs have reoriented their breeding scope to stress tolerance in the last years. The authors of this book have collected the most recent advances and discoveries applied to breeding for abiotic stresses in this book, starting with new physiological concepts and breeding methods, and moving on to discuss modern molecular biological approaches geared to the development of improved cultivars tolerant to most sorts of abiotic stress. Written in an easy to understand style, this book is an excellent reference work for students, scientists and farmers interested in learning how to breed for abiotic stresses scenarios, presenting the state-of-the-art in plant stresses and allowing the reader to develop a greater understanding of the basic mechanisms of tolerance to abiotic stresses and how to breed for them.
Publisher: Springer Science & Business Media
ISBN: 3642305539
Category : Science
Languages : en
Pages : 178
Book Description
The rapid population growth and the increase in the per capita income, especially in the group of emerging countries referred to as BRIC countries (Brazil, Russia, India, China and South Africa) has created huge pressure for the expansion of the agricultural growing area and the crop yields to meet the rising demand. As a result, many areas that have been considered marginal for growing crops, due to their low fertility, drought, salinity, and many other abiotic stresses, have now been incorporated in the production system. Additionally, climate change has brought new challenges to agriculture to produce food, feed, fiber and biofuels. To cope with these new challenges, many plant breeding programs have reoriented their breeding scope to stress tolerance in the last years. The authors of this book have collected the most recent advances and discoveries applied to breeding for abiotic stresses in this book, starting with new physiological concepts and breeding methods, and moving on to discuss modern molecular biological approaches geared to the development of improved cultivars tolerant to most sorts of abiotic stress. Written in an easy to understand style, this book is an excellent reference work for students, scientists and farmers interested in learning how to breed for abiotic stresses scenarios, presenting the state-of-the-art in plant stresses and allowing the reader to develop a greater understanding of the basic mechanisms of tolerance to abiotic stresses and how to breed for them.
Improving Crop Resistance to Abiotic Stress
Author: Narendra Tuteja
Publisher: John Wiley & Sons
ISBN: 3527328408
Category : Science
Languages : en
Pages : 1533
Book Description
The latest update on improving crop resistance to abiotic stress using the advanced key methods of proteomics, genomics and metabolomics. The wellbalanced international mix of contributors from industry and academia cover work carried out on individual crop plants, while also including studies of model organisms that can then be applied to specific crop plants
Publisher: John Wiley & Sons
ISBN: 3527328408
Category : Science
Languages : en
Pages : 1533
Book Description
The latest update on improving crop resistance to abiotic stress using the advanced key methods of proteomics, genomics and metabolomics. The wellbalanced international mix of contributors from industry and academia cover work carried out on individual crop plants, while also including studies of model organisms that can then be applied to specific crop plants
Root Adaptations to Multiple Stress Factors
Author: Idupulapati Madhusudana Rao
Publisher: Frontiers Media SA
ISBN: 2889665143
Category : Science
Languages : en
Pages : 197
Book Description
Publisher: Frontiers Media SA
ISBN: 2889665143
Category : Science
Languages : en
Pages : 197
Book Description
Biotic and Abiotic Stress Responses in Crop Plants
Author: Thomas Dresselhaus
Publisher: MDPI
ISBN: 3038974633
Category : Science
Languages : en
Pages : 253
Book Description
This book is a printed edition of the Special Issue "Biotic and Abiotic Stress Responses in Crop Plants" that was published in Agronomy
Publisher: MDPI
ISBN: 3038974633
Category : Science
Languages : en
Pages : 253
Book Description
This book is a printed edition of the Special Issue "Biotic and Abiotic Stress Responses in Crop Plants" that was published in Agronomy
Sustainable Food Production
Author: Paul Christou
Publisher: Springer
ISBN: 9781461457961
Category : Technology & Engineering
Languages : en
Pages : 1869
Book Description
Gathering some 90 entries from the Encyclopedia of Sustainability Science and Technology, this book covers animal breeding and genetics for food, crop science and technology, ocean farming and sustainable aquaculture, transgenic livestock for food and more.
Publisher: Springer
ISBN: 9781461457961
Category : Technology & Engineering
Languages : en
Pages : 1869
Book Description
Gathering some 90 entries from the Encyclopedia of Sustainability Science and Technology, this book covers animal breeding and genetics for food, crop science and technology, ocean farming and sustainable aquaculture, transgenic livestock for food and more.
Sustainable Crop Production
Author: Mirza Hasanuzzaman
Publisher: BoD – Books on Demand
ISBN: 1789853176
Category : Science
Languages : en
Pages : 354
Book Description
This book includes twenty-one comprehensive chapters addressing various soil and crop management issues, including modern techniques in enhancing crop production in the era of climate change. There are a few case studies and experimental evidence about these production systems in specific locations. Particular focus is provided on the state-of-the-art of biotechnology, nanotechnology, and precision agriculture, as well as many other recent approaches in ensuring sustainable crop production. This book is useful for undergraduate and graduate students, teachers, and researchers, particularly in the fields of crop science, soil science, and agronomy.
Publisher: BoD – Books on Demand
ISBN: 1789853176
Category : Science
Languages : en
Pages : 354
Book Description
This book includes twenty-one comprehensive chapters addressing various soil and crop management issues, including modern techniques in enhancing crop production in the era of climate change. There are a few case studies and experimental evidence about these production systems in specific locations. Particular focus is provided on the state-of-the-art of biotechnology, nanotechnology, and precision agriculture, as well as many other recent approaches in ensuring sustainable crop production. This book is useful for undergraduate and graduate students, teachers, and researchers, particularly in the fields of crop science, soil science, and agronomy.
Genomic Designing for Biotic Stress Resistant Cereal Crops
Author: Chittaranjan Kole
Publisher: Springer Nature
ISBN: 3030758796
Category : Science
Languages : en
Pages : 340
Book Description
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.
Publisher: Springer Nature
ISBN: 3030758796
Category : Science
Languages : en
Pages : 340
Book Description
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.