Ideal Cycle Analysis of a Regenerative Pulse Detonation Engine for Power Production

Ideal Cycle Analysis of a Regenerative Pulse Detonation Engine for Power Production PDF Author: Rafaela Bellini
Publisher:
ISBN:
Category : Electric power
Languages : en
Pages :

Get Book Here

Book Description
Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one-dimensional Chapman-Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich - von Neumann - Döring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone. This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p-v and T-s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction can be obtained as a function of fuel-oxidizer ratio. The Humphrey and ZND cycles are studied in comparison with the Brayton cycle for different fuel-air mixtures such as methane, propane and hydrogen. The validity and limitations of the ZND and Humphrey cycles related to the detonation process are discussed and the criteria for the selection of the best model for the PDE cycle are explained. It is seen that the ZND cycle is a more appropriate representation of the PDE cycle. Next, the thermal and electrical power generation efficiencies for the PDE are compared with those of the deflagration based Brayton cycle. While the Brayton cycle shows an efficiency of 0 at a compressor pressure ratio of 1, the thermal efficiency for the ZND cycle starts out at 42% for hydrogen-air and then climbs to a peak of 66% at a compression ratio of 7 before falling slowly for higher compression ratios. The Brayton cycle efficiency rises above the PDEs for compression ratios above 23. This finding supports the theoretical advantage of PDEs over the gas turbines because PDEs only require a fan or only a few compressor stages, thereby eliminating the need for heavy compressor machinery, making the PDEs less complex and therefore more cost effective than other engines. Lastly, a regeneration study is presented to analyze how the use of exhaust gases can improve the performance of the system. The thermal efficiencies for the regenerative ZND cycle are compared with the efficiencies for the non-regenerative cycle. For a hydrogen- air mixture the thermal efficiency increases from 52%, for a cycle without regeneration, to 78%, for the regenerative cycle. The efficiency is compared with the Carnot efficiency of 84% which is the maximum possible theoretical efficiency of the cycle. When compared to the Brayton cycle thermal efficiencies, the regenerative cycle shows efficiencies that are always higher for the pressure ratio studied of 5 is less than or equal to [pi]c is less than or equal to 25, where [pi]c the compressor pressure ratio of the cycle. This observation strengthens the idea of using regeneration on PDEs.

Ideal Cycle Analysis of a Regenerative Pulse Detonation Engine for Power Production

Ideal Cycle Analysis of a Regenerative Pulse Detonation Engine for Power Production PDF Author: Rafaela Bellini
Publisher:
ISBN:
Category : Electric power
Languages : en
Pages :

Get Book Here

Book Description
Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one-dimensional Chapman-Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich - von Neumann - Döring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone. This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p-v and T-s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction can be obtained as a function of fuel-oxidizer ratio. The Humphrey and ZND cycles are studied in comparison with the Brayton cycle for different fuel-air mixtures such as methane, propane and hydrogen. The validity and limitations of the ZND and Humphrey cycles related to the detonation process are discussed and the criteria for the selection of the best model for the PDE cycle are explained. It is seen that the ZND cycle is a more appropriate representation of the PDE cycle. Next, the thermal and electrical power generation efficiencies for the PDE are compared with those of the deflagration based Brayton cycle. While the Brayton cycle shows an efficiency of 0 at a compressor pressure ratio of 1, the thermal efficiency for the ZND cycle starts out at 42% for hydrogen-air and then climbs to a peak of 66% at a compression ratio of 7 before falling slowly for higher compression ratios. The Brayton cycle efficiency rises above the PDEs for compression ratios above 23. This finding supports the theoretical advantage of PDEs over the gas turbines because PDEs only require a fan or only a few compressor stages, thereby eliminating the need for heavy compressor machinery, making the PDEs less complex and therefore more cost effective than other engines. Lastly, a regeneration study is presented to analyze how the use of exhaust gases can improve the performance of the system. The thermal efficiencies for the regenerative ZND cycle are compared with the efficiencies for the non-regenerative cycle. For a hydrogen- air mixture the thermal efficiency increases from 52%, for a cycle without regeneration, to 78%, for the regenerative cycle. The efficiency is compared with the Carnot efficiency of 84% which is the maximum possible theoretical efficiency of the cycle. When compared to the Brayton cycle thermal efficiencies, the regenerative cycle shows efficiencies that are always higher for the pressure ratio studied of 5 is less than or equal to [pi]c is less than or equal to 25, where [pi]c the compressor pressure ratio of the cycle. This observation strengthens the idea of using regeneration on PDEs.

Ideal Cycle Analysis of a Pulse Detonation Engine

Ideal Cycle Analysis of a Pulse Detonation Engine PDF Author: Maryam Sadrzadeh Moghadam
Publisher:
ISBN:
Category :
Languages : en
Pages : 75

Get Book Here

Book Description


Parametric Cycle Analysis for Pulse Detonation Engines

Parametric Cycle Analysis for Pulse Detonation Engines PDF Author: Haider Hekiri
Publisher:
ISBN: 9780542448836
Category : Aerospace engineering
Languages : en
Pages :

Get Book Here

Book Description
The performance of an ejector-driven pulse detonation engine (PDE) with an afterburner is analytically estimated. In the analysis, the PDE was modeled as a straight tube, closed at the front end and open at the other. A detonation wave starts to travel after it is ignited at the closed end, causing a Chapman-Jouguet detonation wave followed by a Taylor rarefaction to travel to the open end. At that point, rarefaction waves are reflected back to the closed end. The result is a high thrust due to both the primary and secondary flows of the ejector-driven PDE. A theoretical analysis is made to determine the average thrust density and the impulse density per cycle of the primary flow. The mixed flow of the PDE tube and the ejector is then subjected to afterburning. The overall engine performance was eventually derived.

Experimental Analysis of Pulse Detonation Engine Performance by Pressure and Momentum Measurements

Experimental Analysis of Pulse Detonation Engine Performance by Pressure and Momentum Measurements PDF Author: J. Kasahara
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Design, Fabrication, and Testing of a Multi-cycle Pulse Detonation Engine

Design, Fabrication, and Testing of a Multi-cycle Pulse Detonation Engine PDF Author: Eli M. Thorpe
Publisher:
ISBN:
Category :
Languages : en
Pages : 105

Get Book Here

Book Description


Performance and Environmental Impact Assessment of Pulse Detonation Based Engine Systems

Performance and Environmental Impact Assessment of Pulse Detonation Based Engine Systems PDF Author: Aaron J. Glaser
Publisher:
ISBN:
Category :
Languages : en
Pages : 241

Get Book Here

Book Description
The acoustic signature of a pulse detonation engine was characterized in both the near-field and far-field regimes. Experimental measurements were performed in an anechoic test facility designed for jet noise testing. Both shock strength and speed were mapped as a function of radial distance and direction from the PDE exhaust plane. It was found that the PDE generated pressure field can be reasonably modeled by a theoretical point-source explosion. The effect of several exit nozzle configurations on the PDE acoustic signature was studies. These included various chevron nozzles, a perforated nozzle, and a set of proprietary noise attenuation mufflers.

An Analytical Model for the Impulse of a Single-cycle Pulse Detonation Engine

An Analytical Model for the Impulse of a Single-cycle Pulse Detonation Engine PDF Author: E. Wintenberger
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Computational Fluid Dynamic Analysis of the Pulse Detonation Engine Concept

Computational Fluid Dynamic Analysis of the Pulse Detonation Engine Concept PDF Author: E. D. Lynch
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs

A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309102472
Category : Technology & Engineering
Languages : en
Pages : 288

Get Book Here

Book Description
Rocket and air-breathing propulsion systems are the foundation on which planning for future aerospace systems rests. A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs assesses the existing technical base in these areas and examines the future Air Force capabilities the base will be expected to support. This report also defines gaps and recommends where future warfighter capabilities not yet fully defined could be met by current science and technology development plans.

Intake Flow Analysis of a Pulsed Detonation Engine

Intake Flow Analysis of a Pulsed Detonation Engine PDF Author: Joshua Amadeus Strafaccia
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 78

Get Book Here

Book Description
A CFD program is converted and modified to explore unsteady flow within the intake system of a pulse detonation engine (PDE). Using a quasi-one-dimensional approach the program provides insight into the unsteady nature of localized equivalence ratios to include their effects on PDE performance. The original FORTRAN program is converted into the MATLAB architecture, taking full advantage of user availability and post processing convenience. The converted program was validated against the original program and modified to include a primitive intake manifold system with a single fuel injector located approximately 10 feet upstream of the primary intake valve. Constant fuel mass flow rate at the injector end creates local variations in equivalence ratio throughout the PDE that may have significant impact on overall engine performance. The results of the current thesis research suggest that performance effects of up to 21% can be attributed to non-uniform fuel distribution throughout the detonation process and are most prevalent at lower frequencies and fill ratios.