Human Factors Aspects of Operating Small Reactors

Human Factors Aspects of Operating Small Reactors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. They are considering small modular reactors (SMRs) as one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants, and so may require a concept of operations (ConOps) that also is different. The U.S. Nuclear Regulatory Commission (NRC) has begun examining the human factors engineering- (HFE) and ConOps- aspects of SMRs; if needed, they will formulate guidance to support SMR licensing reviews. We developed a ConOps model, consisting of the following dimensions: Plant mission; roles and responsibilities of all agents; staffing, qualifications, and training; management of normal operations; management of off-normal conditions and emergencies; and, management of maintenance and modifications. We are reviewing information on SMR design to obtain data about each of these dimensions, and have identified several preliminary issues. In addition, we are obtaining operations-related information from other types of multi-module systems, such as refineries, to identify lessons learned from their experience. Here, we describe the project's methodology and our preliminary findings.

Human Factors Aspects of Operating Small Reactors

Human Factors Aspects of Operating Small Reactors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. They are considering small modular reactors (SMRs) as one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants, and so may require a concept of operations (ConOps) that also is different. The U.S. Nuclear Regulatory Commission (NRC) has begun examining the human factors engineering- (HFE) and ConOps- aspects of SMRs; if needed, they will formulate guidance to support SMR licensing reviews. We developed a ConOps model, consisting of the following dimensions: Plant mission; roles and responsibilities of all agents; staffing, qualifications, and training; management of normal operations; management of off-normal conditions and emergencies; and, management of maintenance and modifications. We are reviewing information on SMR design to obtain data about each of these dimensions, and have identified several preliminary issues. In addition, we are obtaining operations-related information from other types of multi-module systems, such as refineries, to identify lessons learned from their experience. Here, we describe the project's methodology and our preliminary findings.

NRC Reviewer Aid for Evaluating the Human Factors Engineering Aspects of Small Modular Reactors

NRC Reviewer Aid for Evaluating the Human Factors Engineering Aspects of Small Modular Reactors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations (ConOps). The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering (HFE) and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to support NRC HFE reviewers of SMR applications by identifying some of the questions that can be asked of applicants whose designs have characteristics identified in the issues. The questions for each issue were identified and organized based on the review elements and guidance contained in Chapter 18 of the Standard Review Plan (NUREG-0800), and the Human Factors Engineering Program Review Model (NUREG-0711).

Human Factors Issues For Multi-Modular Reactor Units

Human Factors Issues For Multi-Modular Reactor Units PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Smaller and multi-modular reactor (MMR) will be highly technologically-advanced systems allowing more system flexibility to reactors configurations (e.g., addition/deletion of reactor units). While the technical and financial advantages of systems may be numerous, MMR presents many human factors challenges that may pose vulnerability to plant safety. An important human factors challenge in MMR operation and performance is the monitoring of data from multiple plants from centralized control rooms where human operators are responsible for interpreting, assessing, and responding to different system's states and failures (e.g., simultaneously monitoring refueling at one plant while keeping an eye on another plant's normal operating state). Furthermore, the operational, safety, and performance requirements for MMR can seriously change current staffing models and roles, the mode in which information is displayed, procedures and training to support and guide operators, and risk analysis. For these reasons, addressing human factors concerns in MMR are essential in reducing plant risk.

Human Factors Research and Nuclear Safety

Human Factors Research and Nuclear Safety PDF Author: National Research Committee on Human Factors
Publisher: National Academies Press
ISBN:
Category : Science
Languages : en
Pages : 126

Get Book Here

Book Description


Safety, Reliability, Human Factors, and Human Error in Nuclear Power Plants

Safety, Reliability, Human Factors, and Human Error in Nuclear Power Plants PDF Author: B.S. Dhillon
Publisher: CRC Press
ISBN: 1351624008
Category : Technology & Engineering
Languages : en
Pages : 252

Get Book Here

Book Description
Each year billions of dollars are being spent in the area of nuclear power generation to design, construct, manufacture, operate, and maintain various types of systems around the globe. Many times these systems fail due to safety, reliability, human factors, and human error related problems. The main objective of this book is to combine nuclear power plant safety, reliability, human factors, and human error into a single volume for those individuals that work closely during the nuclear power plant design phase, as well as other phases, thus eliminating the need to consult many different and diverse sources in obtaining the desired information.

Human Reliability Considerations for Small Modular Reactors

Human Reliability Considerations for Small Modular Reactors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations. The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to illustrate how the issues can support SMR probabilistic risk analyses and their review by identifying potential human failure events for a subset of the issues. As part of addressing the human contribution to plant risk, human reliability analysis practitioners identify and quantify the human failure events that can negatively impact normal or emergency plant operations. The results illustrated here can be generalized to identify additional human failure events for the issues discussed and can be applied to those issues not discussed in this report.

Human Factors Aspects of Boiling Water Reactor Reactivity Management Events During Power Operations

Human Factors Aspects of Boiling Water Reactor Reactivity Management Events During Power Operations PDF Author: John Kauffman
Publisher:
ISBN:
Category : Nuclear power plants
Languages : en
Pages : 16

Get Book Here

Book Description


Human Factors Engineering (HFE) Insights for Advanced Reactors Based Upon Operating Experience

Human Factors Engineering (HFE) Insights for Advanced Reactors Based Upon Operating Experience PDF Author: J. Higgins
Publisher:
ISBN: 9780160628030
Category :
Languages : en
Pages : 59

Get Book Here

Book Description


Handbook of Small Modular Nuclear Reactors

Handbook of Small Modular Nuclear Reactors PDF Author: Daniel T. Ingersoll
Publisher: Woodhead Publishing
ISBN: 0128239174
Category : Technology & Engineering
Languages : en
Pages : 648

Get Book Here

Book Description
Handbook of Small Modular Nuclear Reactors, Second Edition is a fully updated comprehensive reference on Small Modular Reactors (SMRs), which reflects the latest research and technological advances in the field from the last five years. Editors Daniel T. Ingersoll and Mario D. Carelli, along with their team of expert contributors, combine their wealth of collective experience to update this comprehensive handbook that provides the reader with all required knowledge on SMRs, expanding on the rapidly growing interest and development of SMRs around the globe. This book begins with an introduction to SMRs for power generation, an overview of international developments, and an analysis of Integral Pressurized Water Reactors as a popular class of SMRs. The second part of the book is dedicated to SMR technologies, including physics, components, I&C, human-system interfaces and safety aspects. Part three discusses the implementation of SMRs, covering economic factors, construction methods, hybrid energy systems and licensing considerations. The fourth part of the book provides an in-depth analysis of SMR R&D and deployment of SMRs within eight countries, including the United States, Republic of Korea, Russia, China, Argentina, and Japan. This edition includes brand new content on the United Kingdom and Canada, where interests in SMRs have increased considerably since the first edition was published. The final part of the book adds a new analysis of the global SMR market and concludes with a perspective on SMR benefits to developing economies. This authoritative and practical handbook benefits engineers, designers, operators, and regulators working in nuclear energy, as well as academics and graduate students researching nuclear reactor technologies. Presents the latest research on SMR technologies and global developments Includes new case study chapters on the United Kingdom and Canada and a chapter on global SMR markets Discusses new technologies such as floating SMRs and molten salt SMRs

Multi-unit Operations in Non-Nuclear Systems

Multi-unit Operations in Non-Nuclear Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.