Author: Marco Abate
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110601974
Category : Mathematics
Languages : en
Pages : 372
Book Description
This completely revised and updated edition of the one variable part of the author's classic older book "Iteration Theory of Holomorphic Maps on Taut Manifolds" presents the theory of holomorphic dynamical systems on hyperbolic Riemann surfaces from the very beginning of the subject up to the most recent developments. It is intended both as a reference book for the experts and as an accessible gateway to this beautiful theory for Master and Ph.D. students. It also contains extensive historical notes and references for further readings.
Holomorphic Dynamics on Hyperbolic Riemann Surfaces
Author: Marco Abate
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110601974
Category : Mathematics
Languages : en
Pages : 372
Book Description
This completely revised and updated edition of the one variable part of the author's classic older book "Iteration Theory of Holomorphic Maps on Taut Manifolds" presents the theory of holomorphic dynamical systems on hyperbolic Riemann surfaces from the very beginning of the subject up to the most recent developments. It is intended both as a reference book for the experts and as an accessible gateway to this beautiful theory for Master and Ph.D. students. It also contains extensive historical notes and references for further readings.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110601974
Category : Mathematics
Languages : en
Pages : 372
Book Description
This completely revised and updated edition of the one variable part of the author's classic older book "Iteration Theory of Holomorphic Maps on Taut Manifolds" presents the theory of holomorphic dynamical systems on hyperbolic Riemann surfaces from the very beginning of the subject up to the most recent developments. It is intended both as a reference book for the experts and as an accessible gateway to this beautiful theory for Master and Ph.D. students. It also contains extensive historical notes and references for further readings.
Geometry In Advanced Pure Mathematics
Author: Shaun Bullett
Publisher: World Scientific
ISBN: 1786341093
Category : Mathematics
Languages : en
Pages : 235
Book Description
This book leads readers from a basic foundation to an advanced level understanding of geometry in advanced pure mathematics. Chapter by chapter, readers will be led from a foundation level understanding to advanced level understanding. This is the perfect text for graduate or PhD mathematical-science students looking for support in algebraic geometry, geometric group theory, modular group, holomorphic dynamics and hyperbolic geometry, syzygies and minimal resolutions, and minimal surfaces.Geometry in Advanced Pure Mathematics is the fourth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
Publisher: World Scientific
ISBN: 1786341093
Category : Mathematics
Languages : en
Pages : 235
Book Description
This book leads readers from a basic foundation to an advanced level understanding of geometry in advanced pure mathematics. Chapter by chapter, readers will be led from a foundation level understanding to advanced level understanding. This is the perfect text for graduate or PhD mathematical-science students looking for support in algebraic geometry, geometric group theory, modular group, holomorphic dynamics and hyperbolic geometry, syzygies and minimal resolutions, and minimal surfaces.Geometry in Advanced Pure Mathematics is the fourth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
An Introduction to Hyperbolic Dynamical Systems
Author: Marco Abate
Publisher:
ISBN: 9788881473106
Category :
Languages : en
Pages : 106
Book Description
Publisher:
ISBN: 9788881473106
Category :
Languages : en
Pages : 106
Book Description
Holomorphic Dynamics
Author: S. Morosawa
Publisher: Cambridge University Press
ISBN: 9780521662581
Category : Mathematics
Languages : en
Pages : 354
Book Description
This book, first published in 2000, is a comprehensive introduction to holomorphic dynamics, that is the dynamics induced by the iteration of various analytic maps in complex number spaces. This has been the focus of much attention in recent years, with, for example, the discovery of the Mandelbrot set, and work on chaotic behaviour of quadratic maps. The treatment is mathematically unified, emphasizing the substantial role played by classical complex analysis in understanding holomorphic dynamics as well as giving an up-to-date coverage of the modern theory. The authors cover entire functions, Kleinian groups and polynomial automorphisms of several complex variables such as complex Henon maps, as well as the case of rational functions. The book will be welcomed by graduate students and professionals in pure mathematics and science who seek a reasonably self-contained introduction to this exciting area.
Publisher: Cambridge University Press
ISBN: 9780521662581
Category : Mathematics
Languages : en
Pages : 354
Book Description
This book, first published in 2000, is a comprehensive introduction to holomorphic dynamics, that is the dynamics induced by the iteration of various analytic maps in complex number spaces. This has been the focus of much attention in recent years, with, for example, the discovery of the Mandelbrot set, and work on chaotic behaviour of quadratic maps. The treatment is mathematically unified, emphasizing the substantial role played by classical complex analysis in understanding holomorphic dynamics as well as giving an up-to-date coverage of the modern theory. The authors cover entire functions, Kleinian groups and polynomial automorphisms of several complex variables such as complex Henon maps, as well as the case of rational functions. The book will be welcomed by graduate students and professionals in pure mathematics and science who seek a reasonably self-contained introduction to this exciting area.
Minimal Surfaces through Nevanlinna Theory
Author: Min Ru
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110989557
Category : Mathematics
Languages : en
Pages : 206
Book Description
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110989557
Category : Mathematics
Languages : en
Pages : 206
Book Description
Complex Kleinian Groups
Author: Angel Cano
Publisher: Springer Science & Business Media
ISBN: 3034804814
Category : Mathematics
Languages : en
Pages : 288
Book Description
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.
Publisher: Springer Science & Business Media
ISBN: 3034804814
Category : Mathematics
Languages : en
Pages : 288
Book Description
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.
Stochastic Calculus of Variations
Author: Yasushi Ishikawa
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110675293
Category : Mathematics
Languages : en
Pages : 376
Book Description
This book is a concise introduction to the stochastic calculus of variations for processes with jumps. The author provides many results on this topic in a self-contained way for e.g., stochastic differential equations (SDEs) with jumps. The book also contains some applications of the stochastic calculus for processes with jumps to the control theory, mathematical finance and so. This third and entirely revised edition of the work is updated to reflect the latest developments in the theory and some applications with graphics.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110675293
Category : Mathematics
Languages : en
Pages : 376
Book Description
This book is a concise introduction to the stochastic calculus of variations for processes with jumps. The author provides many results on this topic in a self-contained way for e.g., stochastic differential equations (SDEs) with jumps. The book also contains some applications of the stochastic calculus for processes with jumps to the control theory, mathematical finance and so. This third and entirely revised edition of the work is updated to reflect the latest developments in the theory and some applications with graphics.
Metrical Almost Periodicity and Applications to Integro-Differential Equations
Author: Marko Kostić
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111233871
Category : Mathematics
Languages : en
Pages : 576
Book Description
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111233871
Category : Mathematics
Languages : en
Pages : 576
Book Description
Spectral Flow
Author: Nora Doll
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111172473
Category : Mathematics
Languages : en
Pages : 460
Book Description
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111172473
Category : Mathematics
Languages : en
Pages : 460
Book Description
Maximal Subellipticity
Author: Brian Street
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111085643
Category : Mathematics
Languages : en
Pages : 768
Book Description
Maximally subelliptic partial differential equations (PDEs) are a far-reaching generalization of elliptic PDEs. Elliptic PDEs hold a special place: sharp results are known for general linear and even fully nonlinear elliptic PDEs. Over the past half-century, important results for elliptic PDEs have been generalized to maximally subelliptic PDEs. This text presents this theory and generalizes the sharp, interior regularity theory for general linear and fully nonlinear elliptic PDEs to the maximally subelliptic setting.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111085643
Category : Mathematics
Languages : en
Pages : 768
Book Description
Maximally subelliptic partial differential equations (PDEs) are a far-reaching generalization of elliptic PDEs. Elliptic PDEs hold a special place: sharp results are known for general linear and even fully nonlinear elliptic PDEs. Over the past half-century, important results for elliptic PDEs have been generalized to maximally subelliptic PDEs. This text presents this theory and generalizes the sharp, interior regularity theory for general linear and fully nonlinear elliptic PDEs to the maximally subelliptic setting.