High-power GaAs-based Diode Lasers with Novel Lateral Designs for Enhanced Brightness, Threshold and Efficiency

High-power GaAs-based Diode Lasers with Novel Lateral Designs for Enhanced Brightness, Threshold and Efficiency PDF Author: Mohamed Elattar
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

High-power GaAs-based Diode Lasers with Novel Lateral Designs for Enhanced Brightness, Threshold and Efficiency

High-power GaAs-based Diode Lasers with Novel Lateral Designs for Enhanced Brightness, Threshold and Efficiency PDF Author: Mohamed Elattar
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Epitaxial Design Optimizations for Increased Efficiency in GaAs-Based High Power Diode Lasers

Epitaxial Design Optimizations for Increased Efficiency in GaAs-Based High Power Diode Lasers PDF Author: Thorben Kaul
Publisher: Cuvillier Verlag
ISBN: 3736963963
Category : Science
Languages : en
Pages : 136

Get Book Here

Book Description
This work presents progress in the root-cause analysis of power saturation mechanisms in continuous wave (CW) driven GaAs-based high-power broad area diode lasers operated at 935 nm. Target is to increase efficiency at high optical CW powers by epitaxial design. The novel extreme triple asymmetric (ETAS) design was developed and patented within this work to equip diode lasers that use an extremely thin p-waveguide with a high modal gain. An iterative variation of diode lasers employing ETAS designs was used to experimentally clarify the impact of modal gain on the temperature dependence of internal differential quantum efficiency (IDQE) and optical loss. High modal gain leads to increased free carrier absorption from the active region. However, less power saturation is observed, which must then be attributed to an improved temperature sensitivity of the IDQE. The effect of longitudinal spatial hole burning (LSHB) leads to above average non-linear carrier loss at the back facet of the device. At high CW currents the junction temperature rises. Therefore, not only the asymmetry of the carrier profile increases but also the average carrier density in order to compensate for the decreased material gain and increased threshold gain. This carrier non-pinning effect above threshold is found in this work to enhance the impact of LSHB already at low currents, leading to rapid degradation of IDQE with temperature. This finding puts LSHB into a new context for CW-driven devices as it emphasizes the importance of low carrier densities at threshold. The carrier density was effectively reduced by applying the novel ETAS design. This enabled diode lasers to be realized that show minimized degradation of IDQE with temperature and therefore improved performance in CW operation.

High-Power Diode Lasers

High-Power Diode Lasers PDF Author: Roland Diehl
Publisher: Springer Science & Business Media
ISBN: 3540478523
Category : Science
Languages : en
Pages : 420

Get Book Here

Book Description
Starting from the basics of semiconductor lasers with emphasis on the generation of high optical output power the reader is introduced in a tutorial way to all key technologies required to fabricate high-power diode-laser sources. Various applications are exemplified.

Design, simulation and analysis of laterally-longitudinally non-uniform edge-emitting GaAs-based diode lasers (Band 73)

Design, simulation and analysis of laterally-longitudinally non-uniform edge-emitting GaAs-based diode lasers (Band 73) PDF Author: Jan-Philipp Koester
Publisher: Cuvillier Verlag
ISBN: 3736968825
Category :
Languages : en
Pages : 171

Get Book Here

Book Description
Edge-emitting quantum-well diode lasers based on GaAs combine a high conversion efficiency, a wide range of emission wavelengths covering a span from 630 nm to 1180 nm, and the ability to achieve high output powers. The often used longitudinal-invariant Fabry-Pérot-type resonators are easy to design but often lead to functionality or performance limitations. In this work, the application of laterally-longitudinally non-uniform resonator configurations is explored as a way to reduce unwanted and performance-limiting effects. The investigations are carried out on existing and entirely newly developed laser designs using dedicated simulation tools. These include a sophisticated time-dependent laser simulator based on a traveling-wave model of the optical fields in the lateral-longitudinal plane and a Maxwell solver based on the eigenmode expansion method for the simulation of passive waveguides. Whenever possible, the simulation results are compared with experimental data. Based on this approach, three fundamentally different laser types are investigated: • Dual-wavelength lasers emitting two slightly detuned wavelengths around 784 nm out of a single aperture • Ridge-waveguide lasers with tapered waveguide and contact layouts that emit light of a wavelength of around 970 nm • Broad-area lasers with slightly tapered contact layouts emitting at 910 nm The results of this thesis underline the potential of lateral-longitudinal non-uniform laser designs to increase selected aspects of device performance, including beam quality, spectral stability, and output power.

Optimization of broad-area GaAs diode lasers for high powers and high efficiencies in the temperature range 200-220 K

Optimization of broad-area GaAs diode lasers for high powers and high efficiencies in the temperature range 200-220 K PDF Author: Carlo Frevert
Publisher: Cuvillier Verlag
ISBN: 373698944X
Category : Science
Languages : en
Pages : 174

Get Book Here

Book Description
This work focuses on the development of AlGaAs-based diode laser (DL) bars optimized for reaching highest powers and efficiencies at low operation temperatures. Specifically, the quasi continuous wave (QCW) pumping of cryogenically cooled Yb:YAG solid-state lasers is targeted, setting requirements on the wavelength (940 nm), the pulse conditions (pulse length 1.2 ms) and frequency (10 Hz) as well as the lowest DL operating temperature THS ~ 200 K, consistent with economic cooling. High fill-factor bars for QCW operation are to reach high optical performance with optical output powers of P  1.5 kW and power conversion efficiencies of ŋE  60% at these power levels. Understanding the efficiency-limiting factors and the behavior at lower temperatures is necessary to design these devices. Optimizations are performed iteratively in three stages. First, vertical epitaxial designs are studied theoretically, adjusted to the targeted operation temperatures and specific laser parameters are extracted. Secondly, resulting vertical designs are processed into low power single emitters and their electro-optical behavior at low currents is experimentally assessed over a wide range of temperatures. The obtained laser parameters characteristic to the vertical design are then used to extrapolate the laser's performance up to the high targeted currents. Finally, vertical designs promising to reach the targeted values for power and efficiency are processed into high power single emitters and bars which are measured up to the highest currents. Eventually, laser bars are fabricated reaching output powers of 2 kW and efficiencies of 61% at 1.5 kW at an operation temperature of 203 K.

High Power Diode Lasers

High Power Diode Lasers PDF Author: Friedrich Bachmann
Publisher: Springer
ISBN: 0387347291
Category : Science
Languages : en
Pages : 553

Get Book Here

Book Description
This book summarizes a five year research project, as well as subsequent results regarding high power diode laser systems and their application in materials processing. The text explores the entire chain of technology, from the semiconductor technology, through cooling mounting and assembly, beam shaping and system technology, to applications in the processing of such materials as metals and polymers. Includes theoretical models, a range of important parameters and practical tips.

High Speed Diode Lasers

High Speed Diode Lasers PDF Author: Sergei A Gurevich
Publisher: World Scientific
ISBN: 9814497061
Category : Science
Languages : en
Pages : 215

Get Book Here

Book Description
This book is composed of seven invited papers which present the current status of high speed diode lasers. Fast carrier and photon dynamics in directly modulated MQW lasers is analyzed and novel design approaches are considered which were critical for the demonstration and record of 40 GHz modulation bandwidth. Attention is centered on the challenges in creation of high speed and low chirp single mode DFB lasers. Recent progress in mode-locked diode lasers is covered, specifically by the examples of 160 fs pulse generation and appearance of microwave pulse repetition rates. Future trends in increasing of high speed laser performance are also examined.

Realization of High Power Diode Lasers with Extremely Narrow Vertical Divergence

Realization of High Power Diode Lasers with Extremely Narrow Vertical Divergence PDF Author: Agnieszka Pietrzak
Publisher: Cuvillier Verlag
ISBN: 3736940661
Category : Science
Languages : en
Pages : 144

Get Book Here

Book Description
The doctoral thesis deals with high power InGaAs/GaAsP/AlGaAs quantum well diode lasers grown on a GaAs substrate with emission wavelengths in the range of 1050 nm – 1150 nm. The objective of this thesis is the development of diode lasers with extremely narrow vertical laser beam divergence without any resulting decrease in the optical output power compared to current state of the art devices. The work is focused on the design of the internal laser structure (epitaxial structure), with the goal of optical mode expansion (thus reduction of the beam divergence), and the experimental investigation of the electro-optical properties of the processed laser devices. Diagnosis of the factors limiting the performance is also performed. The optical mode expansion is realized by increasing the thickness of the waveguide layers. Structures with a very thick optical cavity are named in this work as Super Large Optical Cavity structures (SLOC). The vertical optical mode is modeled by solving the one-dimensional waveguide equation, and the far-field profiles are obtained from the Fourier transform of the electrical field at the laser facet (near-field). Calculations are performed by using the software tool QIP. The electro-optical properties (such as vertical electrical carrier transport and power-voltagecurrent characteristics, without self-heating effect) are simulated using the WIAS-TeSCA software. Both software tools are described in this thesis. The lasers chips, grown by means of MOVPE and processed as broad area single emitters, are experimentally tested under three measurement conditions. First, uncoated and unmounted laser chips with various lengths are characterized under pulsed operation (1.5 μs, 5 kHz) in order to obtain the internal parameters of the laser structure. In the second part of the laser characterization, the facet-coated and mounted devices with large (4 - 8 mm long) Fabry-Perot resonators are tested under quasi-continuous wave operation (500 μs, 20 Hz). Finally, these devices are also tested under ‘zero-heat’ conditions (300 ns pulse duration, 1 kHz repetition rate). The ‘zero-heat’ test is performed in order to investigate the factors, other than overheating of the device, that limit the maximum output power. All measurements are performed at a heat-sink temperature of 25°C. The measurement techniques used to characterize the electro-optical properties of the laser and the laser beam properties are also described. More specifically, the influence of the material composition and the thickness of the waveguide layers on the vertical beam divergence angle (perpendicular to the epitaxial structure) and on the electro-optical properties of the laser is discussed. It is shown that, due to the large cross section of the investigated laser chips, catastrophic optical mirror damage (COMD) is strongly reduced and that one of the major factors limiting the maximum optical power of the discussed diode lasers is weak carrier confinement in the active region leading to enhanced carrier and optical losses due to carrier accumulation in the thick waveguide. The reason for the vertical carrier leakage is a low effective barrier between the quantum well and the GaAs waveguide. Moreover, it is shown that the carrier confinement in the active region can be strengthened in three ways. Firstly, the QW depth is increased for lasers emitting at longer wavelength (here ~ 1130 nm). Secondly, utilizing a higher number of QWs lowers the threshold carrier density per QW. In this case, the electron Fermi-level shifts towards lower energies for lower threshold currents and thus the effective barrier heights are increased. Thirdly, in lasers emitting especially at wavelengths shorter than 1130 nm (around 1064 nm, a wavelength commercially interesting) the quantum wells are shallower and thus the effective barrier is lower. It is shown that AlGaAs waveguides are required to improve the carrier confinement. The AlGaAs alloys provide higher conduction and lower valence band edge energies of the bulk material. Consequently, the potential barrier against carrier escape from the QW to the waveguide is increased. Considering the mode expansion in the SLOC structures, it is shown, in simulation and experimentally, that the multi-quantum well active region, due to its high average refractive index, contributes significantly to the guiding of the modes. The optical mode is stronger confined in active regions with a higher number of quantum wells as well as in structures based on AlGaAs waveguides which are characterized by a lower refractive index compared to GaAs material. The increased mode confinement leads to a reduced equivalent vertical spot-size and results in a wider divergence angle of the laser beam. Moreover, by increasing the thickness of the waveguide layers the active region acts more and more as a waveguide itself thus preventing a further narrowing of the vertical far-field. As a new finding, it is presented that the introduction of low-refractive index quantum barriers (LIQB), enclosing the high-refractive index quantum wells, lowers the average refractive index of the multi-quantum well active region and thus reduces the beam divergence (the invention is content of a German Patent Application DEA102009024945). Through systematic model-based experimental investigations of a series of laser diode structures, the vertical beam divergence was reduced from 19° to 8.6° at full width at half maximum (FWHM) and from 30° to 15°, at 95% power content. The achieved vertical farfield angle is smaller, by a factor of ~3, than state-of-the-art laser devices. The 8 mm long and 200 μm wide single emitters based on the investigated SLOC structures deliver more than 30 W peak-power in quasi-continuous wave mode. The large equivalent spot-size together with the facet passivation prevent COMD failure and the maximum measured power is limited due to the overheating of the device. Moreover, a 4 mm long and 200 μm wide single emitter tested under ‘zero-heat’ condition delivers 124 W power. The maximal measured power was limited by the current supply.

The Blue Laser Diode

The Blue Laser Diode PDF Author: Shuji Nakamura
Publisher: Springer Science & Business Media
ISBN: 366203462X
Category : Science
Languages : en
Pages : 348

Get Book Here

Book Description
In 1993, the author, Shuji Nakamura developed the first commercially available blue and green light-emitting diodes. Now he has made the most important breakthrough in solid state laser techniques to date - the first blue semiconductor laser based on GaN. Here, Dr. Nakamura discusses the physical concept and basic manufacturing technology of these new blue light-emitting and laser diodes. he shows how this represents a new era in commercial applications for semiconductors, including displays, road and railway signalling, lighting, scanners, optical data storage, and much more. Moreover, Nakamura provides fascinating background information on the extraordinary realisation of an extremely successful concept of research and development. Of interest to researchers as well as engineers.

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits PDF Author: Larry A. Coldren
Publisher: John Wiley & Sons
ISBN: 1118148185
Category : Technology & Engineering
Languages : en
Pages : 752

Get Book Here

Book Description
Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer brand new and updated material on GaN-based and quantum-dot lasers, photonic IC technology, detectors, modulators and SOAs, DVDs and storage, eye diagrams and BER concepts, and DFB lasers. Appendices will also be expanded to include quantum-dot issues and more on the relation between spontaneous emission and gain.