Hierarchical Matrices: Algorithms and Analysis

Hierarchical Matrices: Algorithms and Analysis PDF Author: Wolfgang Hackbusch
Publisher: Springer
ISBN: 3662473240
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.

Hierarchical Matrices: Algorithms and Analysis

Hierarchical Matrices: Algorithms and Analysis PDF Author: Wolfgang Hackbusch
Publisher: Springer
ISBN: 3662473240
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.

Hierarchical Matrices

Hierarchical Matrices PDF Author: Mario Bebendorf
Publisher: Springer Science & Business Media
ISBN: 3540771476
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
Hierarchical matrices are an efficient framework for large-scale fully populated matrices arising, e.g., from the finite element discretization of solution operators of elliptic boundary value problems. In addition to storing such matrices, approximations of the usual matrix operations can be computed with logarithmic-linear complexity, which can be exploited to setup approximate preconditioners in an efficient and convenient way. Besides the algorithmic aspects of hierarchical matrices, the main aim of this book is to present their theoretical background. The book contains the existing approximation theory for elliptic problems including partial differential operators with nonsmooth coefficients. Furthermore, it presents in full detail the adaptive cross approximation method for the efficient treatment of integral operators with non-local kernel functions. The theory is supported by many numerical experiments from real applications.

Eigenvalue Algorithms for Symmetric Hierarchical Matrices

Eigenvalue Algorithms for Symmetric Hierarchical Matrices PDF Author: Thomas Mach
Publisher: Thomas Mach
ISBN:
Category : Mathematics
Languages : en
Pages : 173

Get Book Here

Book Description
This thesis is on the numerical computation of eigenvalues of symmetric hierarchical matrices. The numerical algorithms used for this computation are derivations of the LR Cholesky algorithm, the preconditioned inverse iteration, and a bisection method based on LDL factorizations. The investigation of QR decompositions for H-matrices leads to a new QR decomposition. It has some properties that are superior to the existing ones, which is shown by experiments using the HQR decompositions to build a QR (eigenvalue) algorithm for H-matrices does not progress to a more efficient algorithm than the LR Cholesky algorithm. The implementation of the LR Cholesky algorithm for hierarchical matrices together with deflation and shift strategies yields an algorithm that require O(n) iterations to find all eigenvalues. Unfortunately, the local ranks of the iterates show a strong growth in the first steps. These H-fill-ins makes the computation expensive, so that O(n³) flops and O(n²) storage are required. Theorem 4.3.1 explains this behavior and shows that the LR Cholesky algorithm is efficient for the simple structured Hl-matrices. There is an exact LDLT factorization for Hl-matrices and an approximate LDLT factorization for H-matrices in linear-polylogarithmic complexity. This factorizations can be used to compute the inertia of an H-matrix. With the knowledge of the inertia for arbitrary shifts, one can compute an eigenvalue by bisectioning. The slicing the spectrum algorithm can compute all eigenvalues of an Hl-matrix in linear-polylogarithmic complexity. A single eigenvalue can be computed in O(k²n log^4 n). Since the LDLT factorization for general H-matrices is only approximative, the accuracy of the LDLT slicing algorithm is limited. The local ranks of the LDLT factorization for indefinite matrices are generally unknown, so that there is no statement on the complexity of the algorithm besides the numerical results in Table 5.7. The preconditioned inverse iteration computes the smallest eigenvalue and the corresponding eigenvector. This method is efficient, since the number of iterations is independent of the matrix dimension. If other eigenvalues than the smallest are searched, then preconditioned inverse iteration can not be simply applied to the shifted matrix, since positive definiteness is necessary. The squared and shifted matrix (M-mu I)² is positive definite. Inner eigenvalues can be computed by the combination of folded spectrum method and PINVIT. Numerical experiments show that the approximate inversion of (M-mu I)² is more expensive than the approximate inversion of M, so that the computation of the inner eigenvalues is more expensive. We compare the different eigenvalue algorithms. The preconditioned inverse iteration for hierarchical matrices is better than the LDLT slicing algorithm for the computation of the smallest eigenvalues, especially if the inverse is already available. The computation of inner eigenvalues with the folded spectrum method and preconditioned inverse iteration is more expensive. The LDLT slicing algorithm is competitive to H-PINVIT for the computation of inner eigenvalues. In the case of large, sparse matrices, specially tailored algorithms for sparse matrices, like the MATLAB function eigs, are more efficient. If one wants to compute all eigenvalues, then the LDLT slicing algorithm seems to be better than the LR Cholesky algorithm. If the matrix is small enough to be handled in dense arithmetic (and is not an Hl(1)-matrix), then dense eigensolvers, like the LAPACK function dsyev, are superior. The H-PINVIT and the LDLT slicing algorithm require only an almost linear amount of storage. They can handle larger matrices than eigenvalue algorithms for dense matrices. For Hl-matrices of local rank 1, the LDLT slicing algorithm and the LR Cholesky algorithm need almost the same time for the computation of all eigenvalues. For large matrices, both algorithms are faster than the dense LAPACK function dsyev.

Supercomputing Frontiers

Supercomputing Frontiers PDF Author: Rio Yokota
Publisher: Springer
ISBN: 3319699539
Category : Computers
Languages : en
Pages : 301

Get Book Here

Book Description
It constitutes the refereed proceedings of the 4th Asian Supercomputing Conference, SCFA 2018, held in Singapore in March 2018. Supercomputing Frontiers will be rebranded as Supercomputing Frontiers Asia (SCFA), which serves as the technical programme for SCA18. The technical programme for SCA18 consists of four tracks: Application, Algorithms & Libraries Programming System Software Architecture, Network/Communications & Management Data, Storage & Visualisation The 20 papers presented in this volume were carefully reviewed nd selected from 60 submissions.

Matrix Computations and Semiseparable Matrices

Matrix Computations and Semiseparable Matrices PDF Author: Raf Vandebril
Publisher: JHU Press
ISBN: 0801896797
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
In recent years several new classes of matrices have been discovered and their structure exploited to design fast and accurate algorithms. In this new reference work, Raf Vandebril, Marc Van Barel, and Nicola Mastronardi present the first comprehensive overview of the mathematical and numerical properties of the family's newest member: semiseparable matrices. The text is divided into three parts. The first provides some historical background and introduces concepts and definitions concerning structured rank matrices. The second offers some traditional methods for solving systems of equations involving the basic subclasses of these matrices. The third section discusses structured rank matrices in a broader context, presents algorithms for solving higher-order structured rank matrices, and examines hybrid variants such as block quasiseparable matrices. An accessible case study clearly demonstrates the general topic of each new concept discussed. Many of the routines featured are implemented in Matlab and can be downloaded from the Web for further exploration.

Efficient Numerical Methods for Non-local Operators

Efficient Numerical Methods for Non-local Operators PDF Author: Steffen Börm
Publisher: European Mathematical Society
ISBN: 9783037190913
Category : Matrices
Languages : en
Pages : 452

Get Book Here

Book Description
Hierarchical matrices present an efficient way of treating dense matrices that arise in the context of integral equations, elliptic partial differential equations, and control theory. While a dense $n\times n$ matrix in standard representation requires $n^2$ units of storage, a hierarchical matrix can approximate the matrix in a compact representation requiring only $O(n k \log n)$ units of storage, where $k$ is a parameter controlling the accuracy. Hierarchical matrices have been successfully applied to approximate matrices arising in the context of boundary integral methods, to construct preconditioners for partial differential equations, to evaluate matrix functions, and to solve matrix equations used in control theory. $\mathcal{H}^2$-matrices offer a refinement of hierarchical matrices: Using a multilevel representation of submatrices, the efficiency can be significantly improved, particularly for large problems. This book gives an introduction to the basic concepts and presents a general framework that can be used to analyze the complexity and accuracy of $\mathcal{H}^2$-matrix techniques. Starting from basic ideas of numerical linear algebra and numerical analysis, the theory is developed in a straightforward and systematic way, accessible to advanced students and researchers in numerical mathematics and scientific computing. Special techniques are required only in isolated sections, e.g., for certain classes of model problems.

Eigenvalue Algorithms for Symmetric Hierarchical Matrices

Eigenvalue Algorithms for Symmetric Hierarchical Matrices PDF Author: Thomas Mach
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


The Science of High Performance Algorithms for Hierarchical Matrices

The Science of High Performance Algorithms for Hierarchical Matrices PDF Author: Chen-Han Yu (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 230

Get Book Here

Book Description
Many matrices in scientific computing, statistical inference, and machine learning exhibit sparse and low-rank structure. Typically, such structure is exposed by appropriate matrix permutation of rows and columns, and exploited by constructing an hierarchical approximation. That is, the matrix can be written as a summation of sparse and low-rank matrices and this structure repeats recursively. Matrices that admit such hierarchical approximation are known as hierarchical matrices (H-matrices in brief). H-matrix approximation methods are more general and scalable than solely using a sparse or low-rank matrix approximation. Classical numerical linear algebra operations on H-matrices-multiplication, factorization, and eigenvalue decomposition-can be accelerated by many orders of magnitude. Although the literature on H-matrices for problems in computational physics (low-dimensions) is vast, there is less work for generalization and problems appearing in machine learning. Also, there is limited work on high-performance computing algorithms for pure algebraic H-matrix methods. This dissertation tries to address these open problems on building hierarchical approximation for kernel matrices and generic symmetric positive definite (SPD) matrices. We propose a general tree-based framework (GOFMM) for appropriately permuting a matrix to expose its hierarchical structure. GOFMM supports both static and dynamic scheduling, shared memory and distributed memory architectures, and hardware accelerators. The supported algorithms include kernel methods, approximate matrix multiplication and factorization for large sparse and dense matrices.

Computer Graphics through Key Mathematics

Computer Graphics through Key Mathematics PDF Author: Huw Jones
Publisher: Springer Science & Business Media
ISBN: 9781852334222
Category : Computers
Languages : en
Pages : 1078

Get Book Here

Book Description
This book introduces the mathematical concepts that underpin computer graphics. It is written in an approachable way, without burdening readers with the skills of ow to do'things. The author discusses those aspects of mathematics that relate to the computer synthesis of images, and so gives users a better understanding of the limitations of computer graphics systems. Users of computer graphics who have no formal training and wish to understand the essential foundations of computer graphics systems will find this book very useful, as will mathematicians who want to understand how their subject is used in computer image synthesis. '

Wave Propagation in Infinite Domains

Wave Propagation in Infinite Domains PDF Author: Lutz Lehmann
Publisher: Springer Science & Business Media
ISBN: 3540711090
Category : Science
Languages : en
Pages : 185

Get Book Here

Book Description
This book presents theoretical fundamentals and applications of a new numerical model that has the ability to simulate wave propagation. Coverage examines linear waves in ideal fluids and elastic domains. In addition, the book includes a numerical simulation of wave propagation based on scalar and vector wave equations, as well as fluid-structure interaction and soil-structure interaction.