Author: Vasile Brinzanescu
Publisher: Springer
ISBN: 3540498451
Category : Mathematics
Languages : en
Pages : 175
Book Description
The purpose of this book is to present the available (sometimes only partial) solutions to the two fundamental problems: the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. Special features of the nonalgebraic surfaces case, like irreducible vector bundles and stability with respect to a Gauduchon metric, are considered. The reader requires a grounding in geometry at graduate student level. The book will be of interest to graduate students and researchers in complex, algebraic and differential geometry.
Holomorphic Vector Bundles over Compact Complex Surfaces
Author: Vasile Brinzanescu
Publisher: Springer
ISBN: 3540498451
Category : Mathematics
Languages : en
Pages : 175
Book Description
The purpose of this book is to present the available (sometimes only partial) solutions to the two fundamental problems: the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. Special features of the nonalgebraic surfaces case, like irreducible vector bundles and stability with respect to a Gauduchon metric, are considered. The reader requires a grounding in geometry at graduate student level. The book will be of interest to graduate students and researchers in complex, algebraic and differential geometry.
Publisher: Springer
ISBN: 3540498451
Category : Mathematics
Languages : en
Pages : 175
Book Description
The purpose of this book is to present the available (sometimes only partial) solutions to the two fundamental problems: the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. Special features of the nonalgebraic surfaces case, like irreducible vector bundles and stability with respect to a Gauduchon metric, are considered. The reader requires a grounding in geometry at graduate student level. The book will be of interest to graduate students and researchers in complex, algebraic and differential geometry.
Differential Geometry of Complex Vector Bundles
Author: Shoshichi Kobayashi
Publisher: Princeton University Press
ISBN: 1400858682
Category : Mathematics
Languages : en
Pages : 317
Book Description
Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400858682
Category : Mathematics
Languages : en
Pages : 317
Book Description
Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics
Author: Y.-T. Siu
Publisher: Birkhäuser
ISBN: 3034874863
Category : Mathematics
Languages : en
Pages : 172
Book Description
These notes are based on the lectures I delivered at the German Mathematical Society Seminar in Schloss Michkeln in DUsseldorf in June. 1986 on Hermitian-Einstein metrics for stable bundles and Kahler-Einstein metrics. The purpose of these notes is to present to the reader the state-of-the-art results in the simplest and the most comprehensible form using (at least from my own subjective viewpoint) the most natural approach. The presentation in these notes is reasonably self-contained and prerequisi tes are kept to a minimum. Most steps in the estimates are reduced as much as possible to the most basic procedures such as integration by parts and the maximum principle. When less basic procedures are used such as the Sobolev and Calderon-Zygmund inequalities and the interior Schauder estimates. references are given for the reader to look them up. A considerable amount of heuristic and intuitive discussions are included to explain why certain steps are used or certain notions introduced. The inclusion of such discussions makes the style of the presentation at some places more conversational than what is usually expected of rigorous mathemtical prese"ntations. For the problems of Hermi tian-Einstein metrics for stable bundles and Kahler-Einstein metrics one can use either the continuity method or the heat equation method. These two methods are so very intimately related that in many cases the relationship betwen them borders on equivalence. What counts most is the a. priori estimates. The kind of scaffolding one hangs the a.
Publisher: Birkhäuser
ISBN: 3034874863
Category : Mathematics
Languages : en
Pages : 172
Book Description
These notes are based on the lectures I delivered at the German Mathematical Society Seminar in Schloss Michkeln in DUsseldorf in June. 1986 on Hermitian-Einstein metrics for stable bundles and Kahler-Einstein metrics. The purpose of these notes is to present to the reader the state-of-the-art results in the simplest and the most comprehensible form using (at least from my own subjective viewpoint) the most natural approach. The presentation in these notes is reasonably self-contained and prerequisi tes are kept to a minimum. Most steps in the estimates are reduced as much as possible to the most basic procedures such as integration by parts and the maximum principle. When less basic procedures are used such as the Sobolev and Calderon-Zygmund inequalities and the interior Schauder estimates. references are given for the reader to look them up. A considerable amount of heuristic and intuitive discussions are included to explain why certain steps are used or certain notions introduced. The inclusion of such discussions makes the style of the presentation at some places more conversational than what is usually expected of rigorous mathemtical prese"ntations. For the problems of Hermi tian-Einstein metrics for stable bundles and Kahler-Einstein metrics one can use either the continuity method or the heat equation method. These two methods are so very intimately related that in many cases the relationship betwen them borders on equivalence. What counts most is the a. priori estimates. The kind of scaffolding one hangs the a.
The Kobayashi-Hitchin Correspondence
Author: Martin Lbke
Publisher: World Scientific
ISBN: 9789810221683
Category : Mathematics
Languages : en
Pages : 268
Book Description
By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic resp. MHE of irreducible Hermitian-Einstein structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples.After discussing the stability concept on arbitrary compact complex manifolds in Chapter 1, the authors consider, in Chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) Chapter 3. In Chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in Chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VI0. In Chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kahler) case compared to the algebraic or Kahler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included."
Publisher: World Scientific
ISBN: 9789810221683
Category : Mathematics
Languages : en
Pages : 268
Book Description
By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic resp. MHE of irreducible Hermitian-Einstein structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples.After discussing the stability concept on arbitrary compact complex manifolds in Chapter 1, the authors consider, in Chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) Chapter 3. In Chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in Chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VI0. In Chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kahler) case compared to the algebraic or Kahler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included."
Algebraic Surfaces and Holomorphic Vector Bundles
Author: Robert Friedman
Publisher: Springer Science & Business Media
ISBN: 1461216885
Category : Mathematics
Languages : en
Pages : 333
Book Description
A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.
Publisher: Springer Science & Business Media
ISBN: 1461216885
Category : Mathematics
Languages : en
Pages : 333
Book Description
A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.
Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics
Author: Yum-Tong Siu
Publisher:
ISBN:
Category : Hermetian manifolds
Languages : en
Pages : 171
Book Description
Publisher:
ISBN:
Category : Hermetian manifolds
Languages : en
Pages : 171
Book Description
Geometry and Analysis on Complex Manifolds
Author: Toshiki Mabuchi
Publisher: World Scientific
ISBN: 9789810220679
Category : Mathematics
Languages : en
Pages : 268
Book Description
This volume presents papers dedicated to Professor Shoshichi Kobayashi, commemorating the occasion of his sixtieth birthday on January 4, 1992.The principal theme of this volume is “Geometry and Analysis on Complex Manifolds”. It emphasizes the wide mathematical influence that Professor Kobayashi has on areas ranging from differential geometry to complex analysis and algebraic geometry. It covers various materials including holomorphic vector bundles on complex manifolds, Kähler metrics and Einstein–Hermitian metrics, geometric function theory in several complex variables, and symplectic or non-Kähler geometry on complex manifolds. These are areas in which Professor Kobayashi has made strong impact and is continuing to make many deep invaluable contributions.
Publisher: World Scientific
ISBN: 9789810220679
Category : Mathematics
Languages : en
Pages : 268
Book Description
This volume presents papers dedicated to Professor Shoshichi Kobayashi, commemorating the occasion of his sixtieth birthday on January 4, 1992.The principal theme of this volume is “Geometry and Analysis on Complex Manifolds”. It emphasizes the wide mathematical influence that Professor Kobayashi has on areas ranging from differential geometry to complex analysis and algebraic geometry. It covers various materials including holomorphic vector bundles on complex manifolds, Kähler metrics and Einstein–Hermitian metrics, geometric function theory in several complex variables, and symplectic or non-Kähler geometry on complex manifolds. These are areas in which Professor Kobayashi has made strong impact and is continuing to make many deep invaluable contributions.
Vector Bundles
Author: Andrej N. Tjurin
Publisher: Universitätsverlag Göttingen
ISBN: 3938616741
Category : Vector bundles
Languages : en
Pages : 330
Book Description
This is the first volume of a three volume collection of Andrey Nikolaevich Tyurin's Selected Works. It includes his most interesting articles in the field of classical algebraic geometry, written during his whole career from the 1960s. Most of these papers treat different problems of the theory of vector bundles on curves and higher dimensional algebraic varieties, a theory which is central to algebraic geometry and most of its applications.
Publisher: Universitätsverlag Göttingen
ISBN: 3938616741
Category : Vector bundles
Languages : en
Pages : 330
Book Description
This is the first volume of a three volume collection of Andrey Nikolaevich Tyurin's Selected Works. It includes his most interesting articles in the field of classical algebraic geometry, written during his whole career from the 1960s. Most of these papers treat different problems of the theory of vector bundles on curves and higher dimensional algebraic varieties, a theory which is central to algebraic geometry and most of its applications.
Geometry And Analysis On Complex Manifolds: Festschrift For S Kobayashi's 60th Birthday
Author: Toshiki Mabuchi
Publisher: World Scientific
ISBN: 9814501220
Category : Mathematics
Languages : en
Pages : 261
Book Description
This volume presents papers dedicated to Professor Shoshichi Kobayashi, commemorating the occasion of his sixtieth birthday on January 4, 1992.The principal theme of this volume is “Geometry and Analysis on Complex Manifolds”. It emphasizes the wide mathematical influence that Professor Kobayashi has on areas ranging from differential geometry to complex analysis and algebraic geometry. It covers various materials including holomorphic vector bundles on complex manifolds, Kähler metrics and Einstein-Hermitian metrics, geometric function theory in several complex variables, and symplectic or non-Kähler geometry on complex manifolds. These are areas in which Professor Kobayashi has made strong impact and is continuing to make many deep invaluable contributions.
Publisher: World Scientific
ISBN: 9814501220
Category : Mathematics
Languages : en
Pages : 261
Book Description
This volume presents papers dedicated to Professor Shoshichi Kobayashi, commemorating the occasion of his sixtieth birthday on January 4, 1992.The principal theme of this volume is “Geometry and Analysis on Complex Manifolds”. It emphasizes the wide mathematical influence that Professor Kobayashi has on areas ranging from differential geometry to complex analysis and algebraic geometry. It covers various materials including holomorphic vector bundles on complex manifolds, Kähler metrics and Einstein-Hermitian metrics, geometric function theory in several complex variables, and symplectic or non-Kähler geometry on complex manifolds. These are areas in which Professor Kobayashi has made strong impact and is continuing to make many deep invaluable contributions.
The Geometry of Moduli Spaces of Sheaves
Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1139485822
Category : Mathematics
Languages : en
Pages : 345
Book Description
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
Publisher: Cambridge University Press
ISBN: 1139485822
Category : Mathematics
Languages : en
Pages : 345
Book Description
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.