Author: Naim Hamdia Afgan
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 456
Book Description
Heat Transfer and Turbulent Buoyant Convection
Author: Naim Hamdia Afgan
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 456
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 456
Book Description
Buoyancy-induced Flows and Transport
Author: Benjamin Gebhart
Publisher: CRC Press
ISBN: 9780891164029
Category : Art
Languages : en
Pages : 594
Book Description
Publisher: CRC Press
ISBN: 9780891164029
Category : Art
Languages : en
Pages : 594
Book Description
Buoyant Convection in Geophysical Flows
Author: Erich J. Plate
Publisher: Springer Science & Business Media
ISBN: 9401150583
Category : Science
Languages : en
Pages : 493
Book Description
Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameterization of physical processes in buoyancy-driven geophysical flows. The book summarizes interdisciplinary studies of buoyancy effects in different media (atmosphere and hydrosphere) over a wide range of scales (small scale phenomena in unstably stratified and convectively mixed layers to deep convection in the atmosphere and ocean), by different research methods (field measurements, laboratory simulations, numerical modelling), and within a variety of application areas (dispersion of pollutants, weather forecasting, hazardous phenomena associated with buoyant forcing).
Publisher: Springer Science & Business Media
ISBN: 9401150583
Category : Science
Languages : en
Pages : 493
Book Description
Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameterization of physical processes in buoyancy-driven geophysical flows. The book summarizes interdisciplinary studies of buoyancy effects in different media (atmosphere and hydrosphere) over a wide range of scales (small scale phenomena in unstably stratified and convectively mixed layers to deep convection in the atmosphere and ocean), by different research methods (field measurements, laboratory simulations, numerical modelling), and within a variety of application areas (dispersion of pollutants, weather forecasting, hazardous phenomena associated with buoyant forcing).
Heat Transfer and Turbulent Buoyant Convection
Author: Dudley Brian Spalding
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 448
Book Description
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 448
Book Description
Heat Transfer and Turbulent Buoyant Convection
Author: Naim Hamdia Afgan
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 456
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 456
Book Description
Particle Image Velocimetry
Author: Markus Raffel
Publisher: Springer Science & Business Media
ISBN: 3540723072
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What’s more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.
Publisher: Springer Science & Business Media
ISBN: 3540723072
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What’s more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.
Heat Transfer and Turbulent Buoyant Convection
Author: Dudley Brian Spalding
Publisher:
ISBN: 9780835791885
Category :
Languages : en
Pages : 436
Book Description
Publisher:
ISBN: 9780835791885
Category :
Languages : en
Pages : 436
Book Description
Physical and Computational Aspects of Convective Heat Transfer
Author: T. Cebeci
Publisher: Springer Science & Business Media
ISBN: 366202411X
Category : Science
Languages : en
Pages : 497
Book Description
This volume is concerned with the transport of thermal energy in flows of practical significance. The temperature distributions which result from convective heat transfer, in contrast to those associated with radiation heat transfer and conduction in solids, are related to velocity characteristics and we have included sufficient information of momentum transfer to make the book self-contained. This is readily achieved because of the close relation ship between the equations which represent conservation of momentum and energy: it is very desirable since convective heat transfer involves flows with large temperature differences, where the equations are coupled through an equation of state, as well as flows with small temperature differences where the energy equation is dependent on the momentum equation but the momentum equation is assumed independent of the energy equation. The equations which represent the conservation of scalar properties, including thermal energy, species concentration and particle number density can be identical in form and solutions obtained in terms of one dependent variable can represent those of another. Thus, although the discussion and arguments of this book are expressed in terms of heat transfer, they are relevant to problems of mass and particle transport. Care is required, however, in making use of these analogies since, for example, identical boundary conditions are not usually achieved in practice and mass transfer can involve more than one dependent variable.
Publisher: Springer Science & Business Media
ISBN: 366202411X
Category : Science
Languages : en
Pages : 497
Book Description
This volume is concerned with the transport of thermal energy in flows of practical significance. The temperature distributions which result from convective heat transfer, in contrast to those associated with radiation heat transfer and conduction in solids, are related to velocity characteristics and we have included sufficient information of momentum transfer to make the book self-contained. This is readily achieved because of the close relation ship between the equations which represent conservation of momentum and energy: it is very desirable since convective heat transfer involves flows with large temperature differences, where the equations are coupled through an equation of state, as well as flows with small temperature differences where the energy equation is dependent on the momentum equation but the momentum equation is assumed independent of the energy equation. The equations which represent the conservation of scalar properties, including thermal energy, species concentration and particle number density can be identical in form and solutions obtained in terms of one dependent variable can represent those of another. Thus, although the discussion and arguments of this book are expressed in terms of heat transfer, they are relevant to problems of mass and particle transport. Care is required, however, in making use of these analogies since, for example, identical boundary conditions are not usually achieved in practice and mass transfer can involve more than one dependent variable.
Physics Of Buoyant Flows: From Instabilities To Turbulence
Author: Mahendra Kumar Verma
Publisher: World Scientific
ISBN: 9813237813
Category : Science
Languages : en
Pages : 352
Book Description
Gravity pervades the whole universe; hence buoyancy drives fluids everywhere including those in the atmospheres and interiors of planets and stars. Prime examples of such flows are mantle convection, atmospheric flows, solar convection, dynamo process, heat exchangers, airships and hot air balloons. In this book we present fundamentals and applications of thermal convection and stratified flows.Buoyancy brings in extremely rich phenomena including waves and instabilities, patterns, chaos, and turbulence. In this book we present these topics in a systematic manner. First we present a unified treatment of linear theory that yields waves and thermal instability for stably and unstably-stratified flows respectively. We extend this analysis to include rotation and magnetic field. We also describe nonlinear saturation and pattern formation in Rayleigh-Bénard convection.The second half of the book is dedicated to buoyancy-driven turbulence, both in stably-stratified flow and in thermal convection. We describe the spectral theory including energy flux and show that the thermally-driven turbulence is similar to hydrodynamic turbulence. We also describe large-scale quantities like Reynolds and Nusselt numbers, flow anisotropy, and the dynamics of flow structures, namely flow reversals. Thus, this book presents all the major aspects of the buoyancy-driven flows in a coherent manner that would appeal to advanced graduate students and researchers.
Publisher: World Scientific
ISBN: 9813237813
Category : Science
Languages : en
Pages : 352
Book Description
Gravity pervades the whole universe; hence buoyancy drives fluids everywhere including those in the atmospheres and interiors of planets and stars. Prime examples of such flows are mantle convection, atmospheric flows, solar convection, dynamo process, heat exchangers, airships and hot air balloons. In this book we present fundamentals and applications of thermal convection and stratified flows.Buoyancy brings in extremely rich phenomena including waves and instabilities, patterns, chaos, and turbulence. In this book we present these topics in a systematic manner. First we present a unified treatment of linear theory that yields waves and thermal instability for stably and unstably-stratified flows respectively. We extend this analysis to include rotation and magnetic field. We also describe nonlinear saturation and pattern formation in Rayleigh-Bénard convection.The second half of the book is dedicated to buoyancy-driven turbulence, both in stably-stratified flow and in thermal convection. We describe the spectral theory including energy flux and show that the thermally-driven turbulence is similar to hydrodynamic turbulence. We also describe large-scale quantities like Reynolds and Nusselt numbers, flow anisotropy, and the dynamics of flow structures, namely flow reversals. Thus, this book presents all the major aspects of the buoyancy-driven flows in a coherent manner that would appeal to advanced graduate students and researchers.
Heat Transfer 1994
Author: G. F. Hewitt
Publisher: CRC Press
ISBN: 9781560323341
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Publisher: CRC Press
ISBN: 9781560323341
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description