Author: Devangini Patel
Publisher: Packt Publishing Ltd
ISBN: 1789612470
Category : Computers
Languages : en
Pages : 120
Book Description
Make your searches more responsive and smarter by applying Artificial Intelligence to it Key Features Enter the world of Artificial Intelligence with solid concepts and real-world use cases Make your applications intelligent using AI in your day-to-day apps and become a smart developer Design and implement artificial intelligence in searches Book Description With the emergence of big data and modern technologies, AI has acquired a lot of relevance in many domains. The increase in demand for automation has generated many applications for AI in fields such as robotics, predictive analytics, finance, and more. In this book, you will understand what artificial intelligence is. It explains in detail basic search methods: Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search, which can be used to make intelligent decisions when the initial state, end state, and possible actions are known. Random solutions or greedy solutions can be found for such problems. But these are not optimal in either space or time and efficient approaches in time and space will be explored. We will also understand how to formulate a problem, which involves looking at it and identifying its initial state, goal state, and the actions that are possible in each state. We also need to understand the data structures involved while implementing these search algorithms as they form the basis of search exploration. Finally, we will look into what a heuristic is as this decides the quality of one sub-solution over another and helps you decide which step to take. What you will learn Understand the instances where searches can be used Understand the algorithms that can be used to make decisions more intelligent Formulate a problem by specifying its initial state, goal state, and actions Translate the concepts of the selected search algorithm into code Compare how basic search algorithms will perform for the application Implement algorithmic programming using code examples Who this book is for This book is for developers who are keen to get started with Artificial Intelligence and develop practical AI-based applications. Those developers who want to upgrade their normal applications to smart and intelligent versions will find this book useful. A basic knowledge and understanding of Python are assumed.
Hands-On Artificial Intelligence for Search
Author: Devangini Patel
Publisher: Packt Publishing Ltd
ISBN: 1789612470
Category : Computers
Languages : en
Pages : 120
Book Description
Make your searches more responsive and smarter by applying Artificial Intelligence to it Key Features Enter the world of Artificial Intelligence with solid concepts and real-world use cases Make your applications intelligent using AI in your day-to-day apps and become a smart developer Design and implement artificial intelligence in searches Book Description With the emergence of big data and modern technologies, AI has acquired a lot of relevance in many domains. The increase in demand for automation has generated many applications for AI in fields such as robotics, predictive analytics, finance, and more. In this book, you will understand what artificial intelligence is. It explains in detail basic search methods: Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search, which can be used to make intelligent decisions when the initial state, end state, and possible actions are known. Random solutions or greedy solutions can be found for such problems. But these are not optimal in either space or time and efficient approaches in time and space will be explored. We will also understand how to formulate a problem, which involves looking at it and identifying its initial state, goal state, and the actions that are possible in each state. We also need to understand the data structures involved while implementing these search algorithms as they form the basis of search exploration. Finally, we will look into what a heuristic is as this decides the quality of one sub-solution over another and helps you decide which step to take. What you will learn Understand the instances where searches can be used Understand the algorithms that can be used to make decisions more intelligent Formulate a problem by specifying its initial state, goal state, and actions Translate the concepts of the selected search algorithm into code Compare how basic search algorithms will perform for the application Implement algorithmic programming using code examples Who this book is for This book is for developers who are keen to get started with Artificial Intelligence and develop practical AI-based applications. Those developers who want to upgrade their normal applications to smart and intelligent versions will find this book useful. A basic knowledge and understanding of Python are assumed.
Publisher: Packt Publishing Ltd
ISBN: 1789612470
Category : Computers
Languages : en
Pages : 120
Book Description
Make your searches more responsive and smarter by applying Artificial Intelligence to it Key Features Enter the world of Artificial Intelligence with solid concepts and real-world use cases Make your applications intelligent using AI in your day-to-day apps and become a smart developer Design and implement artificial intelligence in searches Book Description With the emergence of big data and modern technologies, AI has acquired a lot of relevance in many domains. The increase in demand for automation has generated many applications for AI in fields such as robotics, predictive analytics, finance, and more. In this book, you will understand what artificial intelligence is. It explains in detail basic search methods: Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search, which can be used to make intelligent decisions when the initial state, end state, and possible actions are known. Random solutions or greedy solutions can be found for such problems. But these are not optimal in either space or time and efficient approaches in time and space will be explored. We will also understand how to formulate a problem, which involves looking at it and identifying its initial state, goal state, and the actions that are possible in each state. We also need to understand the data structures involved while implementing these search algorithms as they form the basis of search exploration. Finally, we will look into what a heuristic is as this decides the quality of one sub-solution over another and helps you decide which step to take. What you will learn Understand the instances where searches can be used Understand the algorithms that can be used to make decisions more intelligent Formulate a problem by specifying its initial state, goal state, and actions Translate the concepts of the selected search algorithm into code Compare how basic search algorithms will perform for the application Implement algorithmic programming using code examples Who this book is for This book is for developers who are keen to get started with Artificial Intelligence and develop practical AI-based applications. Those developers who want to upgrade their normal applications to smart and intelligent versions will find this book useful. A basic knowledge and understanding of Python are assumed.
Hands-On Artificial Intelligence for Beginners
Author: Patrick D. Smith
Publisher: Packt Publishing Ltd
ISBN: 1788992261
Category : Computers
Languages : en
Pages : 349
Book Description
Grasp the fundamentals of Artificial Intelligence and build your own intelligent systems with ease Key FeaturesEnter the world of AI with the help of solid concepts and real-world use casesExplore AI components to build real-world automated intelligenceBecome well versed with machine learning and deep learning conceptsBook Description Virtual Assistants, such as Alexa and Siri, process our requests, Google's cars have started to read addresses, and Amazon's prices and Netflix's recommended videos are decided by AI. Artificial Intelligence is one of the most exciting technologies and is becoming increasingly significant in the modern world. Hands-On Artificial Intelligence for Beginners will teach you what Artificial Intelligence is and how to design and build intelligent applications. This book will teach you to harness packages such as TensorFlow in order to create powerful AI systems. You will begin with reviewing the recent changes in AI and learning how artificial neural networks (ANNs) have enabled more intelligent AI. You'll explore feedforward, recurrent, convolutional, and generative neural networks (FFNNs, RNNs, CNNs, and GNNs), as well as reinforcement learning methods. In the concluding chapters, you'll learn how to implement these methods for a variety of tasks, such as generating text for chatbots, and playing board and video games. By the end of this book, you will be able to understand exactly what you need to consider when optimizing ANNs and how to deploy and maintain AI applications. What you will learnUse TensorFlow packages to create AI systemsBuild feedforward, convolutional, and recurrent neural networksImplement generative models for text generationBuild reinforcement learning algorithms to play gamesAssemble RNNs, CNNs, and decoders to create an intelligent assistantUtilize RNNs to predict stock market behaviorCreate and scale training pipelines and deployment architectures for AI systemsWho this book is for This book is designed for beginners in AI, aspiring AI developers, as well as machine learning enthusiasts with an interest in leveraging various algorithms to build powerful AI applications.
Publisher: Packt Publishing Ltd
ISBN: 1788992261
Category : Computers
Languages : en
Pages : 349
Book Description
Grasp the fundamentals of Artificial Intelligence and build your own intelligent systems with ease Key FeaturesEnter the world of AI with the help of solid concepts and real-world use casesExplore AI components to build real-world automated intelligenceBecome well versed with machine learning and deep learning conceptsBook Description Virtual Assistants, such as Alexa and Siri, process our requests, Google's cars have started to read addresses, and Amazon's prices and Netflix's recommended videos are decided by AI. Artificial Intelligence is one of the most exciting technologies and is becoming increasingly significant in the modern world. Hands-On Artificial Intelligence for Beginners will teach you what Artificial Intelligence is and how to design and build intelligent applications. This book will teach you to harness packages such as TensorFlow in order to create powerful AI systems. You will begin with reviewing the recent changes in AI and learning how artificial neural networks (ANNs) have enabled more intelligent AI. You'll explore feedforward, recurrent, convolutional, and generative neural networks (FFNNs, RNNs, CNNs, and GNNs), as well as reinforcement learning methods. In the concluding chapters, you'll learn how to implement these methods for a variety of tasks, such as generating text for chatbots, and playing board and video games. By the end of this book, you will be able to understand exactly what you need to consider when optimizing ANNs and how to deploy and maintain AI applications. What you will learnUse TensorFlow packages to create AI systemsBuild feedforward, convolutional, and recurrent neural networksImplement generative models for text generationBuild reinforcement learning algorithms to play gamesAssemble RNNs, CNNs, and decoders to create an intelligent assistantUtilize RNNs to predict stock market behaviorCreate and scale training pipelines and deployment architectures for AI systemsWho this book is for This book is designed for beginners in AI, aspiring AI developers, as well as machine learning enthusiasts with an interest in leveraging various algorithms to build powerful AI applications.
Hands-On Artificial Intelligence for IoT
Author: Amita Kapoor
Publisher: Packt Publishing Ltd
ISBN: 1788832760
Category : Computers
Languages : en
Pages : 382
Book Description
Build smarter systems by combining artificial intelligence and the Internet of Things—two of the most talked about topics today Key FeaturesLeverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT dataProcess IoT data and predict outcomes in real time to build smart IoT modelsCover practical case studies on industrial IoT, smart cities, and home automationBook Description There are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter. This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models. By the end of this book, you will be able to build smart AI-powered IoT apps with confidence. What you will learnApply different AI techniques including machine learning and deep learning using TensorFlow and KerasAccess and process data from various distributed sourcesPerform supervised and unsupervised machine learning for IoT dataImplement distributed processing of IoT data over Apache Spark using the MLLib and H2O.ai platformsForecast time-series data using deep learning methodsImplementing AI from case studies in Personal IoT, Industrial IoT, and Smart CitiesGain unique insights from data obtained from wearable devices and smart devicesWho this book is for If you are a data science professional or a machine learning developer looking to build smart systems for IoT, Hands-On Artificial Intelligence for IoT is for you. If you want to learn how popular artificial intelligence (AI) techniques can be used in the Internet of Things domain, this book will also be of benefit. A basic understanding of machine learning concepts will be required to get the best out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1788832760
Category : Computers
Languages : en
Pages : 382
Book Description
Build smarter systems by combining artificial intelligence and the Internet of Things—two of the most talked about topics today Key FeaturesLeverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT dataProcess IoT data and predict outcomes in real time to build smart IoT modelsCover practical case studies on industrial IoT, smart cities, and home automationBook Description There are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter. This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models. By the end of this book, you will be able to build smart AI-powered IoT apps with confidence. What you will learnApply different AI techniques including machine learning and deep learning using TensorFlow and KerasAccess and process data from various distributed sourcesPerform supervised and unsupervised machine learning for IoT dataImplement distributed processing of IoT data over Apache Spark using the MLLib and H2O.ai platformsForecast time-series data using deep learning methodsImplementing AI from case studies in Personal IoT, Industrial IoT, and Smart CitiesGain unique insights from data obtained from wearable devices and smart devicesWho this book is for If you are a data science professional or a machine learning developer looking to build smart systems for IoT, Hands-On Artificial Intelligence for IoT is for you. If you want to learn how popular artificial intelligence (AI) techniques can be used in the Internet of Things domain, this book will also be of benefit. A basic understanding of machine learning concepts will be required to get the best out of this book.
Hands-On Machine Learning with R
Author: Brad Boehmke
Publisher: CRC Press
ISBN: 1000730433
Category : Business & Economics
Languages : en
Pages : 373
Book Description
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Publisher: CRC Press
ISBN: 1000730433
Category : Business & Economics
Languages : en
Pages : 373
Book Description
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
Author: Aurélien Géron
Publisher: "O'Reilly Media, Inc."
ISBN: 149203259X
Category : Computers
Languages : en
Pages : 851
Book Description
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
Publisher: "O'Reilly Media, Inc."
ISBN: 149203259X
Category : Computers
Languages : en
Pages : 851
Book Description
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
Hands-On Artificial Intelligence for Cybersecurity
Author: Alessandro Parisi
Publisher: Packt Publishing Ltd
ISBN: 1789805171
Category : Computers
Languages : en
Pages : 331
Book Description
Build smart cybersecurity systems with the power of machine learning and deep learning to protect your corporate assets Key FeaturesIdentify and predict security threats using artificial intelligenceDevelop intelligent systems that can detect unusual and suspicious patterns and attacksLearn how to test the effectiveness of your AI cybersecurity algorithms and toolsBook Description Today's organizations spend billions of dollars globally on cybersecurity. Artificial intelligence has emerged as a great solution for building smarter and safer security systems that allow you to predict and detect suspicious network activity, such as phishing or unauthorized intrusions. This cybersecurity book presents and demonstrates popular and successful AI approaches and models that you can adapt to detect potential attacks and protect your corporate systems. You'll learn about the role of machine learning and neural networks, as well as deep learning in cybersecurity, and you'll also learn how you can infuse AI capabilities into building smart defensive mechanisms. As you advance, you'll be able to apply these strategies across a variety of applications, including spam filters, network intrusion detection, botnet detection, and secure authentication. By the end of this book, you'll be ready to develop intelligent systems that can detect unusual and suspicious patterns and attacks, thereby developing strong network security defenses using AI. What you will learnDetect email threats such as spamming and phishing using AICategorize APT, zero-days, and polymorphic malware samplesOvercome antivirus limits in threat detectionPredict network intrusions and detect anomalies with machine learningVerify the strength of biometric authentication procedures with deep learningEvaluate cybersecurity strategies and learn how you can improve themWho this book is for If you’re a cybersecurity professional or ethical hacker who wants to build intelligent systems using the power of machine learning and AI, you’ll find this book useful. Familiarity with cybersecurity concepts and knowledge of Python programming is essential to get the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1789805171
Category : Computers
Languages : en
Pages : 331
Book Description
Build smart cybersecurity systems with the power of machine learning and deep learning to protect your corporate assets Key FeaturesIdentify and predict security threats using artificial intelligenceDevelop intelligent systems that can detect unusual and suspicious patterns and attacksLearn how to test the effectiveness of your AI cybersecurity algorithms and toolsBook Description Today's organizations spend billions of dollars globally on cybersecurity. Artificial intelligence has emerged as a great solution for building smarter and safer security systems that allow you to predict and detect suspicious network activity, such as phishing or unauthorized intrusions. This cybersecurity book presents and demonstrates popular and successful AI approaches and models that you can adapt to detect potential attacks and protect your corporate systems. You'll learn about the role of machine learning and neural networks, as well as deep learning in cybersecurity, and you'll also learn how you can infuse AI capabilities into building smart defensive mechanisms. As you advance, you'll be able to apply these strategies across a variety of applications, including spam filters, network intrusion detection, botnet detection, and secure authentication. By the end of this book, you'll be ready to develop intelligent systems that can detect unusual and suspicious patterns and attacks, thereby developing strong network security defenses using AI. What you will learnDetect email threats such as spamming and phishing using AICategorize APT, zero-days, and polymorphic malware samplesOvercome antivirus limits in threat detectionPredict network intrusions and detect anomalies with machine learningVerify the strength of biometric authentication procedures with deep learningEvaluate cybersecurity strategies and learn how you can improve themWho this book is for If you’re a cybersecurity professional or ethical hacker who wants to build intelligent systems using the power of machine learning and AI, you’ll find this book useful. Familiarity with cybersecurity concepts and knowledge of Python programming is essential to get the most out of this book.
Hands-On Artificial Intelligence on Amazon Web Services
Author: Subhashini Tripuraneni
Publisher:
ISBN: 9781789534146
Category : Computers
Languages : en
Pages : 426
Book Description
Perform cloud-based machine learning and deep learning using Amazon Web Services such as SageMaker, Lex, Comprehend, Translate, and Polly Key Features Explore popular machine learning and deep learning services with their underlying algorithms Discover readily available artificial intelligence(AI) APIs on AWS like Vision and Language Services Design robust architectures to enable experimentation, extensibility, and maintainability of AI apps Book Description From data wrangling through to translating text, you can accomplish this and more with the artificial intelligence and machine learning services available on AWS. With this book, you'll work through hands-on exercises and learn to use these services to solve real-world problems. You'll even design, develop, monitor, and maintain machine and deep learning models on AWS. The book starts with an introduction to AI and its applications in different industries, along with an overview of AWS artificial intelligence and machine learning services. You'll then get to grips with detecting and translating text with Amazon Rekognition and Amazon Translate. The book will assist you in performing speech-to-text with Amazon Transcribe and Amazon Polly. Later, you'll discover the use of Amazon Comprehend for extracting information from text, and Amazon Lex for building voice chatbots. You will also understand the key capabilities of Amazon SageMaker such as wrangling big data, discovering topics in text collections, and classifying images. Finally, you'll cover sales forecasting with deep learning and autoregression, before exploring the importance of a feedback loop in machine learning. By the end of this book, you will have the skills you need to implement AI in AWS through hands-on exercises that cover all aspects of the ML model life cycle. What you will learn Gain useful insights into different machine and deep learning models Build and deploy robust deep learning systems to production Train machine and deep learning models with diverse infrastructure specifications Scale AI apps without dealing with the complexity of managing the underlying infrastructure Monitor and Manage AI experiments efficiently Create AI apps using AWS pre-trained AI services Who this book is for This book is for data scientists, machine learning developers, deep learning researchers, and artificial intelligence enthusiasts who want to harness the power of AWS to implement powerful artificial intelligence solutions. A basic understanding of machine learning concepts is expected.
Publisher:
ISBN: 9781789534146
Category : Computers
Languages : en
Pages : 426
Book Description
Perform cloud-based machine learning and deep learning using Amazon Web Services such as SageMaker, Lex, Comprehend, Translate, and Polly Key Features Explore popular machine learning and deep learning services with their underlying algorithms Discover readily available artificial intelligence(AI) APIs on AWS like Vision and Language Services Design robust architectures to enable experimentation, extensibility, and maintainability of AI apps Book Description From data wrangling through to translating text, you can accomplish this and more with the artificial intelligence and machine learning services available on AWS. With this book, you'll work through hands-on exercises and learn to use these services to solve real-world problems. You'll even design, develop, monitor, and maintain machine and deep learning models on AWS. The book starts with an introduction to AI and its applications in different industries, along with an overview of AWS artificial intelligence and machine learning services. You'll then get to grips with detecting and translating text with Amazon Rekognition and Amazon Translate. The book will assist you in performing speech-to-text with Amazon Transcribe and Amazon Polly. Later, you'll discover the use of Amazon Comprehend for extracting information from text, and Amazon Lex for building voice chatbots. You will also understand the key capabilities of Amazon SageMaker such as wrangling big data, discovering topics in text collections, and classifying images. Finally, you'll cover sales forecasting with deep learning and autoregression, before exploring the importance of a feedback loop in machine learning. By the end of this book, you will have the skills you need to implement AI in AWS through hands-on exercises that cover all aspects of the ML model life cycle. What you will learn Gain useful insights into different machine and deep learning models Build and deploy robust deep learning systems to production Train machine and deep learning models with diverse infrastructure specifications Scale AI apps without dealing with the complexity of managing the underlying infrastructure Monitor and Manage AI experiments efficiently Create AI apps using AWS pre-trained AI services Who this book is for This book is for data scientists, machine learning developers, deep learning researchers, and artificial intelligence enthusiasts who want to harness the power of AWS to implement powerful artificial intelligence solutions. A basic understanding of machine learning concepts is expected.
Hands-On Artificial Intelligence with Unreal Engine
Author: Francesco Sapio
Publisher: Packt Publishing Ltd
ISBN: 1788831640
Category : Computers
Languages : en
Pages : 537
Book Description
Unreal Engine is a powerful game development engine that provides rich functionalities to create 2D and 3D games. If you want to use AI to extend the play-life of your games and make them more challenging and fun, this book is for you. It will help you break down AI into simple concepts to give you a fundamental understanding of each of the topics.
Publisher: Packt Publishing Ltd
ISBN: 1788831640
Category : Computers
Languages : en
Pages : 537
Book Description
Unreal Engine is a powerful game development engine that provides rich functionalities to create 2D and 3D games. If you want to use AI to extend the play-life of your games and make them more challenging and fun, this book is for you. It will help you break down AI into simple concepts to give you a fundamental understanding of each of the topics.
Hands-On Artificial Intelligence with Java for Beginners
Author: Nisheeth Joshi
Publisher: Packt Publishing Ltd
ISBN: 1789531020
Category : Computers
Languages : en
Pages : 140
Book Description
Build, train, and deploy intelligent applications using Java libraries Key Features Leverage the power of Java libraries to build smart applications Build and train deep learning models for implementing artificial intelligence Learn various algorithms to automate complex tasks Book Description Artificial intelligence (AI) is increasingly in demand as well as relevant in the modern world, where everything is driven by technology and data. AI can be used for automating systems or processes to carry out complex tasks and functions in order to achieve optimal performance and productivity. Hands-On Artificial Intelligence with Java for Beginners begins by introducing you to AI concepts and algorithms. You will learn about various Java-based libraries and frameworks that can be used in implementing AI to build smart applications. In addition to this, the book teaches you how to implement easy to complex AI tasks, such as genetic programming, heuristic searches, reinforcement learning, neural networks, and segmentation, all with a practical approach. By the end of this book, you will not only have a solid grasp of AI concepts, but you'll also be able to build your own smart applications for multiple domains. What you will learn Leverage different Java packages and tools such as Weka, RapidMiner, and Deeplearning4j, among others Build machine learning models using supervised and unsupervised machine learning techniques Implement different deep learning algorithms in Deeplearning4j and build applications based on them Study the basics of heuristic searching and genetic programming Differentiate between syntactic and semantic similarity among texts Perform sentiment analysis for effective decision making with LingPipe Who this book is for Hands-On Artificial Intelligence with Java for Beginners is for Java developers who want to learn the fundamentals of artificial intelligence and extend their programming knowledge to build smarter applications.
Publisher: Packt Publishing Ltd
ISBN: 1789531020
Category : Computers
Languages : en
Pages : 140
Book Description
Build, train, and deploy intelligent applications using Java libraries Key Features Leverage the power of Java libraries to build smart applications Build and train deep learning models for implementing artificial intelligence Learn various algorithms to automate complex tasks Book Description Artificial intelligence (AI) is increasingly in demand as well as relevant in the modern world, where everything is driven by technology and data. AI can be used for automating systems or processes to carry out complex tasks and functions in order to achieve optimal performance and productivity. Hands-On Artificial Intelligence with Java for Beginners begins by introducing you to AI concepts and algorithms. You will learn about various Java-based libraries and frameworks that can be used in implementing AI to build smart applications. In addition to this, the book teaches you how to implement easy to complex AI tasks, such as genetic programming, heuristic searches, reinforcement learning, neural networks, and segmentation, all with a practical approach. By the end of this book, you will not only have a solid grasp of AI concepts, but you'll also be able to build your own smart applications for multiple domains. What you will learn Leverage different Java packages and tools such as Weka, RapidMiner, and Deeplearning4j, among others Build machine learning models using supervised and unsupervised machine learning techniques Implement different deep learning algorithms in Deeplearning4j and build applications based on them Study the basics of heuristic searching and genetic programming Differentiate between syntactic and semantic similarity among texts Perform sentiment analysis for effective decision making with LingPipe Who this book is for Hands-On Artificial Intelligence with Java for Beginners is for Java developers who want to learn the fundamentals of artificial intelligence and extend their programming knowledge to build smarter applications.
Hands-On Artificial Intelligence for Banking
Author: Jeffrey Ng
Publisher: Packt Publishing Ltd
ISBN: 1788833961
Category : Computers
Languages : en
Pages : 232
Book Description
Delve into the world of real-world financial applications using deep learning, artificial intelligence, and production-grade data feeds and technology with Python Key FeaturesUnderstand how to obtain financial data via Quandl or internal systemsAutomate commercial banking using artificial intelligence and Python programsImplement various artificial intelligence models to make personal banking easyBook Description Remodeling your outlook on banking begins with keeping up to date with the latest and most effective approaches, such as artificial intelligence (AI). Hands-On Artificial Intelligence for Banking is a practical guide that will help you advance in your career in the banking domain. The book will demonstrate AI implementation to make your banking services smoother, more cost-efficient, and accessible to clients, focusing on both the client- and server-side uses of AI. You’ll begin by understanding the importance of artificial intelligence, while also gaining insights into the recent AI revolution in the banking industry. Next, you’ll get hands-on machine learning experience, exploring how to use time series analysis and reinforcement learning to automate client procurements and banking and finance decisions. After this, you’ll progress to learning about mechanizing capital market decisions, using automated portfolio management systems and predicting the future of investment banking. In addition to this, you’ll explore concepts such as building personal wealth advisors and mass customization of client lifetime wealth. Finally, you’ll get to grips with some real-world AI considerations in the field of banking. By the end of this book, you’ll be equipped with the skills you need to navigate the finance domain by leveraging the power of AI. What you will learnAutomate commercial bank pricing with reinforcement learningPerform technical analysis using convolutional layers in KerasUse natural language processing (NLP) for predicting market responses and visualizing them using graph databasesDeploy a robot advisor to manage your personal finances via Open Bank APISense market needs using sentiment analysis for algorithmic marketingExplore AI adoption in banking using practical examplesUnderstand how to obtain financial data from commercial, open, and internal sourcesWho this book is for This is one of the most useful artificial intelligence books for machine learning engineers, data engineers, and data scientists working in the finance industry who are looking to implement AI in their business applications. The book will also help entrepreneurs, venture capitalists, investment bankers, and wealth managers who want to understand the importance of AI in finance and banking and how it can help them solve different problems related to these domains. Prior experience in the financial markets or banking domain, and working knowledge of the Python programming language are a must.
Publisher: Packt Publishing Ltd
ISBN: 1788833961
Category : Computers
Languages : en
Pages : 232
Book Description
Delve into the world of real-world financial applications using deep learning, artificial intelligence, and production-grade data feeds and technology with Python Key FeaturesUnderstand how to obtain financial data via Quandl or internal systemsAutomate commercial banking using artificial intelligence and Python programsImplement various artificial intelligence models to make personal banking easyBook Description Remodeling your outlook on banking begins with keeping up to date with the latest and most effective approaches, such as artificial intelligence (AI). Hands-On Artificial Intelligence for Banking is a practical guide that will help you advance in your career in the banking domain. The book will demonstrate AI implementation to make your banking services smoother, more cost-efficient, and accessible to clients, focusing on both the client- and server-side uses of AI. You’ll begin by understanding the importance of artificial intelligence, while also gaining insights into the recent AI revolution in the banking industry. Next, you’ll get hands-on machine learning experience, exploring how to use time series analysis and reinforcement learning to automate client procurements and banking and finance decisions. After this, you’ll progress to learning about mechanizing capital market decisions, using automated portfolio management systems and predicting the future of investment banking. In addition to this, you’ll explore concepts such as building personal wealth advisors and mass customization of client lifetime wealth. Finally, you’ll get to grips with some real-world AI considerations in the field of banking. By the end of this book, you’ll be equipped with the skills you need to navigate the finance domain by leveraging the power of AI. What you will learnAutomate commercial bank pricing with reinforcement learningPerform technical analysis using convolutional layers in KerasUse natural language processing (NLP) for predicting market responses and visualizing them using graph databasesDeploy a robot advisor to manage your personal finances via Open Bank APISense market needs using sentiment analysis for algorithmic marketingExplore AI adoption in banking using practical examplesUnderstand how to obtain financial data from commercial, open, and internal sourcesWho this book is for This is one of the most useful artificial intelligence books for machine learning engineers, data engineers, and data scientists working in the finance industry who are looking to implement AI in their business applications. The book will also help entrepreneurs, venture capitalists, investment bankers, and wealth managers who want to understand the importance of AI in finance and banking and how it can help them solve different problems related to these domains. Prior experience in the financial markets or banking domain, and working knowledge of the Python programming language are a must.