Rings, Hopf Algebras, and Brauer Groups

Rings, Hopf Algebras, and Brauer Groups PDF Author: Stefaan Caenepeel
Publisher: CRC Press
ISBN: 1000116735
Category : Mathematics
Languages : en
Pages : 349

Get Book Here

Book Description
"Based on papers presented at a recent international conference on algebra and algebraic geometry held jointly in Antwerp and Brussels, Belgium. Presents both survey and research articles featuring new results from the intersection of algebra and geometry. "

Group Theory and Hopf Algebras

Group Theory and Hopf Algebras PDF Author: A. P. Balachandran
Publisher: World Scientific
ISBN: 9814322202
Category : Science
Languages : en
Pages : 270

Get Book Here

Book Description
This book is addressed to graduate students and research workers in theoretical physics who want a thorough introduction to group theory and Hopf algebras. It is suitable for a one-semester course in group theory or a two-semester course which also treats advanced topics. Starting from basic definitions, it goes on to treat both finite and Lie groups as well as Hopf algebras. Because of the diversity in the choice of topics, which does not place undue emphasis on finite or Lie groups, it should be useful to physicists working in many branches. A unique aspect of the book is its treatment of Hopf algebras in a form accessible to physicists. Hopf algebras are generalizations of groups and their concepts are acquiring importance in the treatment of conformal field theories, noncommutative spacetimes, topological quantum computation and other important domains of investigation. But there is a scarcity of treatments of Hopf algebras at a level and in a manner that physicists are comfortable with. This book addresses this need superbly. There are illustrative examples from physics scattered throughout the book and in its set of problems. It also has a good bibliography. These features should enhance its value to readers. The authors are senior physicists with considerable research and teaching experience in diverse aspects of fundamental physics. The book, being the outcome of their combined efforts, stands testament to their knowledge and pedagogical skills.

Hopf Algebras and Their Actions on Rings

Hopf Algebras and Their Actions on Rings PDF Author: Susan Montgomery
Publisher: American Mathematical Soc.
ISBN: 9780821889268
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description


Foundations of Quantum Group Theory

Foundations of Quantum Group Theory PDF Author: Shahn Majid
Publisher: Cambridge University Press
ISBN: 9780521648684
Category : Group theory
Languages : en
Pages : 668

Get Book Here

Book Description
A graduate level text which systematically lays out the foundations of Quantum Groups.

Representations of Finite Classical Groups

Representations of Finite Classical Groups PDF Author: A. V. Zelevinsky
Publisher: Springer
ISBN: 3540387110
Category : Mathematics
Languages : en
Pages : 189

Get Book Here

Book Description


Quantum Groups

Quantum Groups PDF Author: Christian Kassel
Publisher: Springer Science & Business Media
ISBN: 1461207835
Category : Mathematics
Languages : en
Pages : 540

Get Book Here

Book Description
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

Coxeter Groups and Hopf Algebras

Coxeter Groups and Hopf Algebras PDF Author: Marcelo Aguiar
Publisher: American Mathematical Soc.
ISBN: 0821853546
Category : Education
Languages : en
Pages : 201

Get Book Here

Book Description
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary background ideas making this work accessible to advanced graduate students. The later chapters culminate in a unified and conceptual construction of several Hopf algebras based on combinatorial objects which emerge naturally from the geometric viewpoint. This work lays a foundation and provides new insights for further development of the subject.

Representations of Algebraic Groups

Representations of Algebraic Groups PDF Author: Jens Carsten Jantzen
Publisher: American Mathematical Soc.
ISBN: 082184377X
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.

Complex Cobordism and Stable Homotopy Groups of Spheres

Complex Cobordism and Stable Homotopy Groups of Spheres PDF Author: Douglas C. Ravenel
Publisher: American Mathematical Soc.
ISBN: 082182967X
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.

Introduction to Quantum Groups

Introduction to Quantum Groups PDF Author: George Lusztig
Publisher: Springer Science & Business Media
ISBN: 0817647171
Category : Mathematics
Languages : en
Pages : 361

Get Book Here

Book Description
The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.

Quantum Groups

Quantum Groups PDF Author: Ross Street
Publisher: Cambridge University Press
ISBN: 1139461443
Category : Mathematics
Languages : en
Pages : 160

Get Book Here

Book Description
Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986.