Author: Leonid Bokut
Publisher: World Scientific
ISBN: 9814619507
Category : Mathematics
Languages : en
Pages : 308
Book Description
The book is about (associative, Lie and other) algebras, groups, semigroups presented by generators and defining relations. They play a great role in modern mathematics. It is enough to mention the quantum groups and Hopf algebra theory, the Kac-Moody and Borcherds algebra theory, the braid groups and Hecke algebra theory, the Coxeter groups and semisimple Lie algebra theory, the plactic monoid theory. One of the main problems for such presentations is the problem of normal forms of their elements. Classical examples of such normal forms give the Poincaré-Birkhoff-Witt theorem for universal enveloping algebras and Artin-Markov normal form theorem for braid groups in Burau generators.What is now called Gröbner-Shirshov bases theory is a general approach to the problem. It was created by a Russian mathematician A I Shirshov (1921-1981) for Lie algebras (explicitly) and associative algebras (implicitly) in 1962. A few years later, H Hironaka created a theory of standard bases for topological commutative algebra and B Buchberger initiated this kind of theory for commutative algebras, the Gröbner basis theory. The Shirshov paper was largely unknown outside Russia. The book covers this gap in the modern mathematical literature. Now Gröbner-Shirshov bases method has many applications both for classical algebraic structures (associative, Lie algebra, groups, semigroups) and new structures (dialgebra, pre-Lie algebra, Rota-Baxter algebra, operads). This is a general and powerful method in algebra.
Grobner-shirshov Bases: Normal Forms, Combinatorial And Decision Problems In Algebra
Author: Leonid Bokut
Publisher: World Scientific
ISBN: 9814619507
Category : Mathematics
Languages : en
Pages : 308
Book Description
The book is about (associative, Lie and other) algebras, groups, semigroups presented by generators and defining relations. They play a great role in modern mathematics. It is enough to mention the quantum groups and Hopf algebra theory, the Kac-Moody and Borcherds algebra theory, the braid groups and Hecke algebra theory, the Coxeter groups and semisimple Lie algebra theory, the plactic monoid theory. One of the main problems for such presentations is the problem of normal forms of their elements. Classical examples of such normal forms give the Poincaré-Birkhoff-Witt theorem for universal enveloping algebras and Artin-Markov normal form theorem for braid groups in Burau generators.What is now called Gröbner-Shirshov bases theory is a general approach to the problem. It was created by a Russian mathematician A I Shirshov (1921-1981) for Lie algebras (explicitly) and associative algebras (implicitly) in 1962. A few years later, H Hironaka created a theory of standard bases for topological commutative algebra and B Buchberger initiated this kind of theory for commutative algebras, the Gröbner basis theory. The Shirshov paper was largely unknown outside Russia. The book covers this gap in the modern mathematical literature. Now Gröbner-Shirshov bases method has many applications both for classical algebraic structures (associative, Lie algebra, groups, semigroups) and new structures (dialgebra, pre-Lie algebra, Rota-Baxter algebra, operads). This is a general and powerful method in algebra.
Publisher: World Scientific
ISBN: 9814619507
Category : Mathematics
Languages : en
Pages : 308
Book Description
The book is about (associative, Lie and other) algebras, groups, semigroups presented by generators and defining relations. They play a great role in modern mathematics. It is enough to mention the quantum groups and Hopf algebra theory, the Kac-Moody and Borcherds algebra theory, the braid groups and Hecke algebra theory, the Coxeter groups and semisimple Lie algebra theory, the plactic monoid theory. One of the main problems for such presentations is the problem of normal forms of their elements. Classical examples of such normal forms give the Poincaré-Birkhoff-Witt theorem for universal enveloping algebras and Artin-Markov normal form theorem for braid groups in Burau generators.What is now called Gröbner-Shirshov bases theory is a general approach to the problem. It was created by a Russian mathematician A I Shirshov (1921-1981) for Lie algebras (explicitly) and associative algebras (implicitly) in 1962. A few years later, H Hironaka created a theory of standard bases for topological commutative algebra and B Buchberger initiated this kind of theory for commutative algebras, the Gröbner basis theory. The Shirshov paper was largely unknown outside Russia. The book covers this gap in the modern mathematical literature. Now Gröbner-Shirshov bases method has many applications both for classical algebraic structures (associative, Lie algebra, groups, semigroups) and new structures (dialgebra, pre-Lie algebra, Rota-Baxter algebra, operads). This is a general and powerful method in algebra.
Advances in Algebra
Author: K. P. Shum
Publisher: World Scientific
ISBN: 9812705805
Category : Mathematics
Languages : en
Pages : 531
Book Description
This is the proceedings of the ICM2002 Satellite Conference on Algebras. Over 175 participants attended the meeting. The opening ceremony included an address by R. Gonchidorsh, former vice-president of the Mongolian Republic in Uaalannbaatar. The topics covered at the conference included general algebras, semigroups, groups, rings, hopf algebras, modules, codes, languages, automation theory, graphs, fuzz algebras and applications.
Publisher: World Scientific
ISBN: 9812705805
Category : Mathematics
Languages : en
Pages : 531
Book Description
This is the proceedings of the ICM2002 Satellite Conference on Algebras. Over 175 participants attended the meeting. The opening ceremony included an address by R. Gonchidorsh, former vice-president of the Mongolian Republic in Uaalannbaatar. The topics covered at the conference included general algebras, semigroups, groups, rings, hopf algebras, modules, codes, languages, automation theory, graphs, fuzz algebras and applications.
Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers
Author: Kenji Iohara
Publisher: Springer Nature
ISBN: 3030264548
Category : Mathematics
Languages : en
Pages : 375
Book Description
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Gröbner bases) and geometry (via quiver theory). Gröbner bases serve as effective models for computation in algebras of various types. Although the theory of Gröbner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced – with big impact – in the 1990s. Divided into two parts, the book first discusses the theory of Gröbner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Gröbner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
Publisher: Springer Nature
ISBN: 3030264548
Category : Mathematics
Languages : en
Pages : 375
Book Description
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Gröbner bases) and geometry (via quiver theory). Gröbner bases serve as effective models for computation in algebras of various types. Although the theory of Gröbner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced – with big impact – in the 1990s. Divided into two parts, the book first discusses the theory of Gröbner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Gröbner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
Combinatorial Problems and Exercises
Author: László Lovász
Publisher: American Mathematical Soc.
ISBN: 0821842625
Category : Mathematics
Languages : en
Pages : 642
Book Description
The main purpose of this book is to provide help in learning existing techniques in combinatorics. The most effective way of learning such techniques is to solve exercises and problems. This book presents all the material in the form of problems and series of problems (apart from some general comments at the beginning of each chapter). In the second part, a hint is given for each exercise, which contains the main idea necessary for the solution, but allows the reader to practice theechniques by completing the proof. In the third part, a full solution is provided for each problem. This book will be useful to those students who intend to start research in graph theory, combinatorics or their applications, and for those researchers who feel that combinatorial techniques mightelp them with their work in other branches of mathematics, computer science, management science, electrical engineering and so on. For background, only the elements of linear algebra, group theory, probability and calculus are needed.
Publisher: American Mathematical Soc.
ISBN: 0821842625
Category : Mathematics
Languages : en
Pages : 642
Book Description
The main purpose of this book is to provide help in learning existing techniques in combinatorics. The most effective way of learning such techniques is to solve exercises and problems. This book presents all the material in the form of problems and series of problems (apart from some general comments at the beginning of each chapter). In the second part, a hint is given for each exercise, which contains the main idea necessary for the solution, but allows the reader to practice theechniques by completing the proof. In the third part, a full solution is provided for each problem. This book will be useful to those students who intend to start research in graph theory, combinatorics or their applications, and for those researchers who feel that combinatorial techniques mightelp them with their work in other branches of mathematics, computer science, management science, electrical engineering and so on. For background, only the elements of linear algebra, group theory, probability and calculus are needed.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 888
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 888
Book Description
Algebra.
Author: Kostrikin, Aleksei Ivanovich Kostrikin
Publisher:
ISBN: 9780387546995
Category :
Languages : en
Pages : 287
Book Description
Publisher:
ISBN: 9780387546995
Category :
Languages : en
Pages : 287
Book Description
New Trends in Algebras and Combinatorics
Author: K. P. Shum
Publisher:
ISBN: 9811215472
Category : Algebra
Languages : en
Pages : 498
Book Description
Publisher:
ISBN: 9811215472
Category : Algebra
Languages : en
Pages : 498
Book Description
Differential Equations from the Algebraic Standpoint
Author: Joseph Fels Ritt
Publisher: American Mathematical Soc.
ISBN: 0821846051
Category : Mathematics
Languages : en
Pages : 184
Book Description
This book can be viewed as a first attempt to systematically develop an algebraic theory of nonlinear differential equations, both ordinary and partial. The main goal of the author was to construct a theory of elimination, which ``will reduce the existence problem for a finite or infinite system of algebraic differential equations to the application of the implicit function theorem taken with Cauchy's theorem in the ordinary case and Riquier's in the partial.'' In his 1934 review of the book, J. M. Thomas called it ``concise, readable, original, precise, and stimulating'', and his words still remain true. A more fundamental and complete account of further developments of the algebraic approach to differential equations is given in Ritt's treatise Differential Algebra, written almost 20 years after the present work (Colloquium Publications, Vol. 33, American Mathematical Society, 1950).
Publisher: American Mathematical Soc.
ISBN: 0821846051
Category : Mathematics
Languages : en
Pages : 184
Book Description
This book can be viewed as a first attempt to systematically develop an algebraic theory of nonlinear differential equations, both ordinary and partial. The main goal of the author was to construct a theory of elimination, which ``will reduce the existence problem for a finite or infinite system of algebraic differential equations to the application of the implicit function theorem taken with Cauchy's theorem in the ordinary case and Riquier's in the partial.'' In his 1934 review of the book, J. M. Thomas called it ``concise, readable, original, precise, and stimulating'', and his words still remain true. A more fundamental and complete account of further developments of the algebraic approach to differential equations is given in Ritt's treatise Differential Algebra, written almost 20 years after the present work (Colloquium Publications, Vol. 33, American Mathematical Society, 1950).
Gradings on Simple Lie Algebras
Author: Alberto Elduque
Publisher: American Mathematical Soc.
ISBN: 0821898469
Category : Mathematics
Languages : en
Pages : 355
Book Description
This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some non-classical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form.
Publisher: American Mathematical Soc.
ISBN: 0821898469
Category : Mathematics
Languages : en
Pages : 355
Book Description
This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some non-classical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form.
Term Rewriting and All That
Author: Franz Baader
Publisher: Cambridge University Press
ISBN: 9780521779203
Category : Computers
Languages : en
Pages : 318
Book Description
Unified and self-contained introduction to term-rewriting; suited for students or professionals.
Publisher: Cambridge University Press
ISBN: 9780521779203
Category : Computers
Languages : en
Pages : 318
Book Description
Unified and self-contained introduction to term-rewriting; suited for students or professionals.