Author: Torkel Franzén
Publisher: CRC Press
ISBN: 1439876924
Category : Mathematics
Languages : en
Pages : 184
Book Description
"Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Gödel
Gödel's Theorem
Author: Torkel Franzén
Publisher: CRC Press
ISBN: 1439876924
Category : Mathematics
Languages : en
Pages : 184
Book Description
"Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Gödel
Publisher: CRC Press
ISBN: 1439876924
Category : Mathematics
Languages : en
Pages : 184
Book Description
"Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Gödel
An Introduction to Gödel's Theorems
Author: Peter Smith
Publisher: Cambridge University Press
ISBN: 1139465937
Category : Mathematics
Languages : en
Pages : 376
Book Description
In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic.
Publisher: Cambridge University Press
ISBN: 1139465937
Category : Mathematics
Languages : en
Pages : 376
Book Description
In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic.
Godel's Incompleteness Theorems
Author: Raymond M. Smullyan
Publisher: Oxford University Press
ISBN: 0195364376
Category : Mathematics
Languages : en
Pages : 156
Book Description
Kurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's incompleteness theorems. The level of presentation is suitable for anyone with a basic acquaintance with mathematical logic. As a clear, concise introduction to a difficult but essential subject, the book will appeal to mathematicians, philosophers, and computer scientists.
Publisher: Oxford University Press
ISBN: 0195364376
Category : Mathematics
Languages : en
Pages : 156
Book Description
Kurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's incompleteness theorems. The level of presentation is suitable for anyone with a basic acquaintance with mathematical logic. As a clear, concise introduction to a difficult but essential subject, the book will appeal to mathematicians, philosophers, and computer scientists.
Incompleteness
Author: Rebecca Goldstein
Publisher: W. W. Norton & Company
ISBN: 0393327604
Category : Biography & Autobiography
Languages : en
Pages : 299
Book Description
"An introduction to the life and thought of Kurt Gödel, who transformed our conception of math forever"--Provided by publisher.
Publisher: W. W. Norton & Company
ISBN: 0393327604
Category : Biography & Autobiography
Languages : en
Pages : 299
Book Description
"An introduction to the life and thought of Kurt Gödel, who transformed our conception of math forever"--Provided by publisher.
Godel's Theorem in Focus
Author: S.G. Shanker
Publisher: Taylor & Francis
ISBN: 1134947984
Category : Philosophy
Languages : en
Pages : 271
Book Description
A layman's guide to the mechanics of Gödel's proof together with a lucid discussion of the issues which it raises. Includes an essay discussing the significance of Gödel's work in the light of Wittgenstein's criticisms.
Publisher: Taylor & Francis
ISBN: 1134947984
Category : Philosophy
Languages : en
Pages : 271
Book Description
A layman's guide to the mechanics of Gödel's proof together with a lucid discussion of the issues which it raises. Includes an essay discussing the significance of Gödel's work in the light of Wittgenstein's criticisms.
Gödel's Theorems and Zermelo's Axioms
Author: Lorenz Halbeisen
Publisher: Springer Nature
ISBN: 3030522792
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Gödel’s classical completeness and incompleteness theorems. In particular, the book includes a full proof of Gödel’s second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on the Zermelo’s axioms, containing a presentation of Gödel’s constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers. The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory. Each chapter concludes with a list of exercises.
Publisher: Springer Nature
ISBN: 3030522792
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Gödel’s classical completeness and incompleteness theorems. In particular, the book includes a full proof of Gödel’s second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on the Zermelo’s axioms, containing a presentation of Gödel’s constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers. The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory. Each chapter concludes with a list of exercises.
Gödel's Proof
Author: Ernest Nagel
Publisher: Psychology Press
ISBN: 041504040X
Category : Gödel's theorem
Languages : en
Pages : 118
Book Description
In 1931 the mathematical logician Kurt Godel published a revolutionary paper that challenged certain basic assumptions underpinning mathematics and logic. A colleague of Albert Einstein, his theorem proved that mathematics was partly based on propositions not provable within the mathematical system and had radical implications that have echoed throughout many fields. A gripping combination of science and accessibility, Godel’s Proofby Nagel and Newman is for both mathematicians and the idly curious, offering those with a taste for logic and philosophy the chance to satisfy their intellectual curiosity.
Publisher: Psychology Press
ISBN: 041504040X
Category : Gödel's theorem
Languages : en
Pages : 118
Book Description
In 1931 the mathematical logician Kurt Godel published a revolutionary paper that challenged certain basic assumptions underpinning mathematics and logic. A colleague of Albert Einstein, his theorem proved that mathematics was partly based on propositions not provable within the mathematical system and had radical implications that have echoed throughout many fields. A gripping combination of science and accessibility, Godel’s Proofby Nagel and Newman is for both mathematicians and the idly curious, offering those with a taste for logic and philosophy the chance to satisfy their intellectual curiosity.
Godel's Theorem Simplified
Author: Harry J. Gensler
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 94
Book Description
This helpful volume explains and proves Godel's theorem, which states that arithmetic cannot be reduced to any axiomatic system. Written simply and directly, this book is intended for the student and general reader and presumes no specialized knowledge of mathematics or logic.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 94
Book Description
This helpful volume explains and proves Godel's theorem, which states that arithmetic cannot be reduced to any axiomatic system. Written simply and directly, this book is intended for the student and general reader and presumes no specialized knowledge of mathematics or logic.
A Friendly Introduction to Mathematical Logic
Author: Christopher C. Leary
Publisher: Lulu.com
ISBN: 1942341075
Category : Computers
Languages : en
Pages : 382
Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
Publisher: Lulu.com
ISBN: 1942341075
Category : Computers
Languages : en
Pages : 382
Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
On Formally Undecidable Propositions of Principia Mathematica and Related Systems
Author: Kurt Gödel
Publisher: Courier Corporation
ISBN: 0486158403
Category : Mathematics
Languages : en
Pages : 82
Book Description
First English translation of revolutionary paper (1931) that established that even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. Introduction by R. B. Braithwaite.
Publisher: Courier Corporation
ISBN: 0486158403
Category : Mathematics
Languages : en
Pages : 82
Book Description
First English translation of revolutionary paper (1931) that established that even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. Introduction by R. B. Braithwaite.