Geometry of Manifolds with Non-negative Sectional Curvature

Geometry of Manifolds with Non-negative Sectional Curvature PDF Author: Owen Dearricott
Publisher: Springer
ISBN: 3319063731
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.

Geometry of Manifolds with Non-negative Sectional Curvature

Geometry of Manifolds with Non-negative Sectional Curvature PDF Author: Owen Dearricott
Publisher: Springer
ISBN: 3319063731
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.

Geometry of Nonpositively Curved Manifolds

Geometry of Nonpositively Curved Manifolds PDF Author: Patrick Eberlein
Publisher: University of Chicago Press
ISBN: 9780226181981
Category : Mathematics
Languages : en
Pages : 460

Get Book Here

Book Description
Starting from the foundations, the author presents an almost entirely self-contained treatment of differentiable spaces of nonpositive curvature, focusing on the symmetric spaces in which every geodesic lies in a flat Euclidean space of dimension at least two. The book builds to a discussion of the Mostow Rigidity Theorem and its generalizations, and concludes by exploring the relationship in nonpositively curved spaces between geometric and algebraic properties of the fundamental group. This introduction to the geometry of symmetric spaces of non-compact type will serve as an excellent guide for graduate students new to the material, and will also be a useful reference text for mathematicians already familiar with the subject.

Comparison Geometry

Comparison Geometry PDF Author: Karsten Grove
Publisher: Cambridge University Press
ISBN: 9780521592222
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
This is an up to date work on a branch of Riemannian geometry called Comparison Geometry.

Geometry of Manifolds

Geometry of Manifolds PDF Author:
Publisher: Academic Press
ISBN: 0080873278
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
Geometry of Manifolds

A Panoramic View of Riemannian Geometry

A Panoramic View of Riemannian Geometry PDF Author: Marcel Berger
Publisher: Springer Science & Business Media
ISBN: 3642182453
Category : Mathematics
Languages : en
Pages : 835

Get Book Here

Book Description
This book introduces readers to the living topics of Riemannian Geometry and details the main results known to date. The results are stated without detailed proofs but the main ideas involved are described, affording the reader a sweeping panoramic view of almost the entirety of the field. From the reviews "The book has intrinsic value for a student as well as for an experienced geometer. Additionally, it is really a compendium in Riemannian Geometry." --MATHEMATICAL REVIEWS

Comparison Theorems in Riemannian Geometry

Comparison Theorems in Riemannian Geometry PDF Author: Jeff Cheeger
Publisher: Newnes
ISBN: 0444107649
Category : Computers
Languages : en
Pages : 183

Get Book Here

Book Description
Comparison Theorems in Riemannian Geometry

Riemannian Geometry

Riemannian Geometry PDF Author: Peter Petersen
Publisher: Springer Science & Business Media
ISBN: 1475764340
Category : Mathematics
Languages : en
Pages : 443

Get Book Here

Book Description
Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialise in Riemannian geometry. Instead of variational techniques, the author uses a unique approach, emphasising distance functions and special co-ordinate systems. He also uses standard calculus with some techniques from differential equations to provide a more elementary route. Many chapters contain material typically found in specialised texts, never before published in a single source. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research - including sections on convergence and compactness of families of manifolds. Thus, this book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.

Manifolds of Nonpositive Curvature

Manifolds of Nonpositive Curvature PDF Author: Werner Ballmann
Publisher: Springer Science & Business Media
ISBN: 1468491598
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the Collège de France in Paris. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.

Moduli Spaces of Riemannian Metrics

Moduli Spaces of Riemannian Metrics PDF Author: Wilderich Tuschmann
Publisher: Springer
ISBN: 3034809484
Category : Mathematics
Languages : en
Pages : 127

Get Book Here

Book Description
This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces? We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research.

Geodesic Flows

Geodesic Flows PDF Author: Gabriel P. Paternain
Publisher: Springer Science & Business Media
ISBN: 1461216001
Category : Mathematics
Languages : en
Pages : 160

Get Book Here

Book Description
The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane's formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank the referee for a very careful reading of the manuscript and for a large number of comments with corrections and suggestions for improvement.