Author: John Oprea
Publisher: MAA
ISBN: 9780883857489
Category : Mathematics
Languages : en
Pages : 508
Book Description
This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.
Differential Geometry and Its Applications
Author: John Oprea
Publisher: MAA
ISBN: 9780883857489
Category : Mathematics
Languages : en
Pages : 508
Book Description
This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.
Publisher: MAA
ISBN: 9780883857489
Category : Mathematics
Languages : en
Pages : 508
Book Description
This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.
An Introduction to Differential Geometry with Applications to Elasticity
Author: Philippe G. Ciarlet
Publisher: Springer Science & Business Media
ISBN: 1402042485
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].
Publisher: Springer Science & Business Media
ISBN: 1402042485
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].
Yet Another Calculus Text
Author: Dan Sloughter
Publisher: Orange Grove Texts Plus
ISBN: 9781616100896
Category :
Languages : en
Pages : 0
Book Description
Publisher: Orange Grove Texts Plus
ISBN: 9781616100896
Category :
Languages : en
Pages : 0
Book Description
Geometric Integration Theory
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
ISBN: 0817646795
Category : Mathematics
Languages : en
Pages : 344
Book Description
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Publisher: Springer Science & Business Media
ISBN: 0817646795
Category : Mathematics
Languages : en
Pages : 344
Book Description
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Modern Geometry with Applications
Author: George A. Jennings
Publisher: Springer Science & Business Media
ISBN: 1461208556
Category : Mathematics
Languages : en
Pages : 193
Book Description
This introduction to modern geometry differs from other books in the field due to its emphasis on applications and its discussion of special relativity as a major example of a non-Euclidean geometry. Additionally, it covers the two important areas of non-Euclidean geometry, spherical geometry and projective geometry, as well as emphasising transformations, and conics and planetary orbits. Much emphasis is placed on applications throughout the book, which motivate the topics, and many additional applications are given in the exercises. It makes an excellent introduction for those who need to know how geometry is used in addition to its formal theory.
Publisher: Springer Science & Business Media
ISBN: 1461208556
Category : Mathematics
Languages : en
Pages : 193
Book Description
This introduction to modern geometry differs from other books in the field due to its emphasis on applications and its discussion of special relativity as a major example of a non-Euclidean geometry. Additionally, it covers the two important areas of non-Euclidean geometry, spherical geometry and projective geometry, as well as emphasising transformations, and conics and planetary orbits. Much emphasis is placed on applications throughout the book, which motivate the topics, and many additional applications are given in the exercises. It makes an excellent introduction for those who need to know how geometry is used in addition to its formal theory.
Vector and Geometric Calculus
Author: Alan Macdonald
Publisher: Createspace Independent Publishing Platform
ISBN: 9781480132450
Category : Calculus
Languages : en
Pages : 0
Book Description
This textbook for the undergraduate vector calculus course presents a unified treatment of vector and geometric calculus. This is the printing of August 2022. The book is a sequel to the text Linear and Geometric Algebra by the same author. That text is a prerequisite for this one. Its web page is at faculty.luther.edu/ macdonal/laga. Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Just as geometric algebra generalizes linear algebra in powerful ways, geometric calculus generalizes vector calculus in powerful ways. Traditional vector calculus topics are covered, as they must be, since readers will encounter them in other texts and out in the world. Differential geometry is used today in many disciplines. A final chapter is devoted to it. Download the book's table of contents, preface, and index at the book's web site: faculty.luther.edu/ macdonal/vagc. From a review of Linear and Geometric Algebra: Alan Macdonald's text is an excellent resource if you are just beginning the study of geometric algebra and would like to learn or review traditional linear algebra in the process. The clarity and evenness of the writing, as well as the originality of presentation that is evident throughout this text, suggest that the author has been successful as a mathematics teacher in the undergraduate classroom. This carefully crafted text is ideal for anyone learning geometric algebra in relative isolation, which I suspect will be the case for many readers. -- Jeffrey Dunham, William R. Kenan Jr. Professor of Natural Sciences, Middlebury College
Publisher: Createspace Independent Publishing Platform
ISBN: 9781480132450
Category : Calculus
Languages : en
Pages : 0
Book Description
This textbook for the undergraduate vector calculus course presents a unified treatment of vector and geometric calculus. This is the printing of August 2022. The book is a sequel to the text Linear and Geometric Algebra by the same author. That text is a prerequisite for this one. Its web page is at faculty.luther.edu/ macdonal/laga. Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Just as geometric algebra generalizes linear algebra in powerful ways, geometric calculus generalizes vector calculus in powerful ways. Traditional vector calculus topics are covered, as they must be, since readers will encounter them in other texts and out in the world. Differential geometry is used today in many disciplines. A final chapter is devoted to it. Download the book's table of contents, preface, and index at the book's web site: faculty.luther.edu/ macdonal/vagc. From a review of Linear and Geometric Algebra: Alan Macdonald's text is an excellent resource if you are just beginning the study of geometric algebra and would like to learn or review traditional linear algebra in the process. The clarity and evenness of the writing, as well as the originality of presentation that is evident throughout this text, suggest that the author has been successful as a mathematics teacher in the undergraduate classroom. This carefully crafted text is ideal for anyone learning geometric algebra in relative isolation, which I suspect will be the case for many readers. -- Jeffrey Dunham, William R. Kenan Jr. Professor of Natural Sciences, Middlebury College
Differential Geometry
Author: Erwin Kreyszig
Publisher: Courier Corporation
ISBN: 0486318621
Category : Mathematics
Languages : en
Pages : 384
Book Description
An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.
Publisher: Courier Corporation
ISBN: 0486318621
Category : Mathematics
Languages : en
Pages : 384
Book Description
An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.
Introduction to Numerical Linear Algebra and Optimisation
Author: Philippe G. Ciarlet
Publisher: Cambridge University Press
ISBN: 9780521339841
Category : Computers
Languages : en
Pages : 456
Book Description
The purpose of this book is to give a thorough introduction to the most commonly used methods of numerical linear algebra and optimisation. The prerequisites are some familiarity with the basic properties of matrices, finite-dimensional vector spaces, advanced calculus, and some elementary notations from functional analysis. The book is in two parts. The first deals with numerical linear algebra (review of matrix theory, direct and iterative methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimisation (general algorithms, linear and nonlinear programming). The author has based the book on courses taught for advanced undergraduate and beginning graduate students and the result is a well-organised and lucid exposition. Summaries of basic mathematics are provided, proofs of theorems are complete yet kept as simple as possible, and applications from physics and mechanics are discussed. Professor Ciarlet has also helpfully provided over 40 line diagrams, a great many applications, and a useful guide to further reading. This excellent textbook, which is translated and revised from the very successful French edition, will be of great value to students of numerical analysis, applied mathematics and engineering.
Publisher: Cambridge University Press
ISBN: 9780521339841
Category : Computers
Languages : en
Pages : 456
Book Description
The purpose of this book is to give a thorough introduction to the most commonly used methods of numerical linear algebra and optimisation. The prerequisites are some familiarity with the basic properties of matrices, finite-dimensional vector spaces, advanced calculus, and some elementary notations from functional analysis. The book is in two parts. The first deals with numerical linear algebra (review of matrix theory, direct and iterative methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimisation (general algorithms, linear and nonlinear programming). The author has based the book on courses taught for advanced undergraduate and beginning graduate students and the result is a well-organised and lucid exposition. Summaries of basic mathematics are provided, proofs of theorems are complete yet kept as simple as possible, and applications from physics and mechanics are discussed. Professor Ciarlet has also helpfully provided over 40 line diagrams, a great many applications, and a useful guide to further reading. This excellent textbook, which is translated and revised from the very successful French edition, will be of great value to students of numerical analysis, applied mathematics and engineering.
Calculus
Author: Kenneth Kuttler
Publisher: World Scientific
ISBN: 9814324264
Category : Mathematics
Languages : en
Pages : 501
Book Description
This is a book on single variable calculus including most of the important applications of calculus. It also includes proofs of all theorems presented, either in the text itself, or in an appendix. It also contains an introduction to vectors and vector products which is developed further in Volume 2. While the book does include all the proofs of the theorems, many of the applications are presented more simply and less formally than is often the case in similar titles. Supplementary materials are available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected]. This book is also available as a set with Volume 2: CALCULUS: Theory and Applications.
Publisher: World Scientific
ISBN: 9814324264
Category : Mathematics
Languages : en
Pages : 501
Book Description
This is a book on single variable calculus including most of the important applications of calculus. It also includes proofs of all theorems presented, either in the text itself, or in an appendix. It also contains an introduction to vectors and vector products which is developed further in Volume 2. While the book does include all the proofs of the theorems, many of the applications are presented more simply and less formally than is often the case in similar titles. Supplementary materials are available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected]. This book is also available as a set with Volume 2: CALCULUS: Theory and Applications.
Geometry of Derivation with Applications
Author: Norman Lloyd Johnson
Publisher:
ISBN: 9781032349183
Category : Combinatorial geometry
Languages : en
Pages : 0
Book Description
"This book centers on combinatorial geometry. It focuses on derivation over skewfields. By virtue of the combinatorial embedding theory is a classification of derivable nets may be given that relates the net to a "classical pseudo-regulus net" both of which are considered to live in the same ambient affine geometry"--
Publisher:
ISBN: 9781032349183
Category : Combinatorial geometry
Languages : en
Pages : 0
Book Description
"This book centers on combinatorial geometry. It focuses on derivation over skewfields. By virtue of the combinatorial embedding theory is a classification of derivable nets may be given that relates the net to a "classical pseudo-regulus net" both of which are considered to live in the same ambient affine geometry"--