Geometry: from Isometries to Special Relativity

Geometry: from Isometries to Special Relativity PDF Author: Nam-Hoon Lee
Publisher: Springer Nature
ISBN: 3030421015
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
This textbook offers a geometric perspective on special relativity, bridging Euclidean space, hyperbolic space, and Einstein’s spacetime in one accessible, self-contained volume. Using tools tailored to undergraduates, the author explores Euclidean and non-Euclidean geometries, gradually building from intuitive to abstract spaces. By the end, readers will have encountered a range of topics, from isometries to the Lorentz–Minkowski plane, building an understanding of how geometry can be used to model special relativity. Beginning with intuitive spaces, such as the Euclidean plane and the sphere, a structure theorem for isometries is introduced that serves as a foundation for increasingly sophisticated topics, such as the hyperbolic plane and the Lorentz–Minkowski plane. By gradually introducing tools throughout, the author offers readers an accessible pathway to visualizing increasingly abstract geometric concepts. Numerous exercises are also included with selected solutions provided. Geometry: from Isometries to Special Relativity offers a unique approach to non-Euclidean geometries, culminating in a mathematical model for special relativity. The focus on isometries offers undergraduates an accessible progression from the intuitive to abstract; instructors will appreciate the complete instructor solutions manual available online. A background in elementary calculus is assumed.

Geometry: from Isometries to Special Relativity

Geometry: from Isometries to Special Relativity PDF Author: Nam-Hoon Lee
Publisher: Springer Nature
ISBN: 3030421015
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
This textbook offers a geometric perspective on special relativity, bridging Euclidean space, hyperbolic space, and Einstein’s spacetime in one accessible, self-contained volume. Using tools tailored to undergraduates, the author explores Euclidean and non-Euclidean geometries, gradually building from intuitive to abstract spaces. By the end, readers will have encountered a range of topics, from isometries to the Lorentz–Minkowski plane, building an understanding of how geometry can be used to model special relativity. Beginning with intuitive spaces, such as the Euclidean plane and the sphere, a structure theorem for isometries is introduced that serves as a foundation for increasingly sophisticated topics, such as the hyperbolic plane and the Lorentz–Minkowski plane. By gradually introducing tools throughout, the author offers readers an accessible pathway to visualizing increasingly abstract geometric concepts. Numerous exercises are also included with selected solutions provided. Geometry: from Isometries to Special Relativity offers a unique approach to non-Euclidean geometries, culminating in a mathematical model for special relativity. The focus on isometries offers undergraduates an accessible progression from the intuitive to abstract; instructors will appreciate the complete instructor solutions manual available online. A background in elementary calculus is assumed.

Semi-Riemannian Geometry

Semi-Riemannian Geometry PDF Author: Stephen C. Newman
Publisher: John Wiley & Sons
ISBN: 1119517532
Category : Mathematics
Languages : en
Pages : 656

Get Book Here

Book Description
An introduction to semi-Riemannian geometry as a foundation for general relativity Semi-Riemannian Geometry: The Mathematical Language of General Relativity is an accessible exposition of the mathematics underlying general relativity. The book begins with background on linear and multilinear algebra, general topology, and real analysis. This is followed by material on the classical theory of curves and surfaces, expanded to include both the Lorentz and Euclidean signatures. The remainder of the book is devoted to a discussion of smooth manifolds, smooth manifolds with boundary, smooth manifolds with a connection, semi-Riemannian manifolds, and differential operators, culminating in applications to Maxwell’s equations and the Einstein tensor. Many worked examples and detailed diagrams are provided to aid understanding. This book will appeal especially to physics students wishing to learn more differential geometry than is usually provided in texts on general relativity.

Semi-Riemannian Geometry With Applications to Relativity

Semi-Riemannian Geometry With Applications to Relativity PDF Author: Barrett O'Neill
Publisher: Academic Press
ISBN: 0080570577
Category : Mathematics
Languages : en
Pages : 483

Get Book Here

Book Description
This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.

Special Relativity

Special Relativity PDF Author: Michael Tsamparlis
Publisher: Springer Science & Business Media
ISBN: 3642038379
Category : Science
Languages : en
Pages : 605

Get Book Here

Book Description
Writing a new book on the classic subject of Special Relativity, on which numerous important physicists have contributed and many books have already been written, can be like adding another epicycle to the Ptolemaic cosmology. Furthermore, it is our belief that if a book has no new elements, but simply repeats what is written in the existing literature, perhaps with a different style, then this is not enough to justify its publication. However, after having spent a number of years, both in class and research with relativity, I have come to the conclusion that there exists a place for a new book. Since it appears that somewhere along the way, mathem- ics may have obscured and prevailed to the degree that we tend to teach relativity (and I believe, theoretical physics) simply using “heavier” mathematics without the inspiration and the mastery of the classic physicists of the last century. Moreover current trends encourage the application of techniques in producing quick results and not tedious conceptual approaches resulting in long-lasting reasoning. On the other hand, physics cannot be done a ́ la carte stripped from philosophy, or, to put it in a simple but dramatic context A building is not an accumulation of stones! As a result of the above, a major aim in the writing of this book has been the distinction between the mathematics of Minkowski space and the physics of r- ativity.

Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity

Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity PDF Author: Abraham A. Ungar
Publisher: World Scientific
ISBN: 9812772294
Category : Science
Languages : en
Pages : 649

Get Book Here

Book Description
This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. It introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Newtonian velocity addition is the common vector addition, which is both commutative and associative. The resulting vector spaces, in turn, form the algebraic setting for the standard model of Euclidean geometry. In full analogy, Einsteinian velocity addition is a gyrovector addition, which is both gyrocommutative and gyroassociative. The resulting gyrovector spaces, in turn, form the algebraic setting for the Beltrami–Klein ball model of the hyperbolic geometry of Bolyai and Lobachevsky. Similarly, Mצbius addition gives rise to gyrovector spaces that form the algebraic setting for the Poincarי ball model of hyperbolic geometry. In full analogy with classical results, the book presents a novel relativistic interpretation of stellar aberration in terms of relativistic gyrotrigonometry and gyrovector addition. Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. The novel relativistic resultant mass of the system, concentrated at the relativistic center of mass, dictates the validity of the dark matter and the dark energy that were introduced by cosmologists as ad hoc postulates to explain cosmological observations about missing gravitational force and late-time cosmic accelerated expansion. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying analytic hyperbolic geometry.

A Conceptual History of Space and Symmetry

A Conceptual History of Space and Symmetry PDF Author: Pietro Giuseppe Fré
Publisher: Springer
ISBN: 3319980238
Category : Science
Languages : en
Pages : 323

Get Book Here

Book Description
This book presents the author’s personal historical perspective and conceptual analysis on symmetry and geometry. The author enlightens with modern views the historical process which led to the contemporary vision of space and symmetry that are used in theoretical physics and in particular in such abstract and advanced descriptions of the physical world as those provided by supergravity. The book is written intertwining storytelling and philosophical argumentation with some essential technical material. The author argues that symmetry and geometry are inextricably entangled and their current meaning is the result of a long process of abstraction which was determined through history and can be understood within the analytic system of thought of western civilization that started with the Ancient Greeks. The evolution of geometry and symmetry theory in the last forty years has been deeply and constructively influenced by supersymmetry/supergravity and the allied constructions of strings and branes. Further advances in theoretical physics cannot be based simply on the Galilean method of interrogating nature and then formulating a testable theory to explain the observed phenomena. One ought to interrogate human thought, meaning frontier-line mathematics concerned with geometry and symmetry in order to find there the threads of so far unobserved correspondences, reinterpretations and renewed conceptions.

Memorial Volume For Yi-shi Duan

Memorial Volume For Yi-shi Duan PDF Author: Mo-lin Ge
Publisher: World Scientific
ISBN: 9813237287
Category : Science
Languages : en
Pages : 383

Get Book Here

Book Description
Yi-Shi Duan (1927-2016) was one of the world-renowned pioneers in the study of gauge field theory and general relativity. Trained in the former Soviet Union, Prof. Duan returned to China in 1957 to work in Lanzhou University for 60 years. In 1963, he came up with a general co-variant form of the conservation law of the energy-momentum tensor in general relativity. In 1979, he suggested that the gauge potential could be decomposed, which has important implications to gauge field theory. He trained in China a big team of talents in theoretical physics. His contributions to theoretical physics in China have earned him praise from both Professor Shiing-Shen Chern and Professor Chen-Ning Yang.

Special Relativity

Special Relativity PDF Author: Michael Tsamparlis
Publisher: Springer Nature
ISBN: 3030273474
Category : Science
Languages : en
Pages : 829

Get Book Here

Book Description
This textbook develops Special Relativity in a systematic way and offers problems with detailed solutions to empower students to gain a real understanding of this core subject in physics. This new edition has been thoroughly updated and has new sections on relativistic fluids, relativistic kinematics and on four-acceleration. The problems and solution section has been significantly expanded and short history sections have been included throughout the book. The approach is structural in the sense that it develops Special Relativity in Minkowski space following the parallel steps as the development of Newtonian Physics in Euclidian space. A second characteristic of the book is that it discusses the mathematics of the theory independently of the physical principles, so that the reader will appreciate their role in the development of the physical theory. The book is intended to be used both as a textbook for an advanced undergraduate teaching course in Special Relativity but also as a reference book for the future.

A Geometric Algebra Invitation to Space-Time Physics, Robotics and Molecular Geometry

A Geometric Algebra Invitation to Space-Time Physics, Robotics and Molecular Geometry PDF Author: Carlile Lavor
Publisher: Springer
ISBN: 3319906658
Category : Mathematics
Languages : en
Pages : 135

Get Book Here

Book Description
This book offers a gentle introduction to key elements of Geometric Algebra, along with their applications in Physics, Robotics and Molecular Geometry. Major applications covered are the physics of space-time, including Maxwell electromagnetism and the Dirac equation; robotics, including formulations for the forward and inverse kinematics and an overview of the singularity problem for serial robots; and molecular geometry, with 3D-protein structure calculations using NMR data. The book is primarily intended for graduate students and advanced undergraduates in related fields, but can also benefit professionals in search of a pedagogical presentation of these subjects.

Topics in Geometry

Topics in Geometry PDF Author: Robert Bix
Publisher: Elsevier
ISBN: 1483296466
Category : Mathematics
Languages : en
Pages : 549

Get Book Here

Book Description
This volume presents an accessible, self-contained survey of topics in Euclidean and non-Euclidean geometry. It includes plentiful illustrations and exercises in support of the thoroughly worked-out proofs. The author's emphasis on the connections between Euclidean and non-Euclidean geometry unifies the range of topics covered.The text opens with a brief review of elementary geometry before proceeding to advanced material. Topics covered include advanced Euclidean and non-Euclidean geometry, division ratios and triangles, transformation geometry, projective geometry, conic sections, and hyperbolic and absolute geometry. Topics in Geometry includes over 800 illustrations and extensive exercises of varying difficulty.