Critical Point Theory and Submanifold Geometry

Critical Point Theory and Submanifold Geometry PDF Author: Richard S. Palais
Publisher: Springer
ISBN: 3540459960
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description

Critical Point Theory and Submanifold Geometry

Critical Point Theory and Submanifold Geometry PDF Author: Richard S. Palais
Publisher: Springer
ISBN: 3540459960
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description


Geometry and Topology of Submanifolds IX

Geometry and Topology of Submanifolds IX PDF Author: F. Defever
Publisher: World Scientific
ISBN: 9789810238971
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
http://www.worldscientific.com/worldscibooks/10.1142/4122

Introduction to Geometry and Topology

Introduction to Geometry and Topology PDF Author: Werner Ballmann
Publisher: Birkhäuser
ISBN: 3034809832
Category : Mathematics
Languages : en
Pages : 174

Get Book Here

Book Description
This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.

Geometry And Topology Of Submanifolds, Iii: Proceedings Of The Leeds Differential Geometry Workshop 1990

Geometry And Topology Of Submanifolds, Iii: Proceedings Of The Leeds Differential Geometry Workshop 1990 PDF Author: Alan West
Publisher: World Scientific
ISBN: 9814611344
Category :
Languages : en
Pages : 336

Get Book Here

Book Description
This workshop collected together works by experts working in various aspects of the differential geometry of submanifold and discussed recent advances and unsolved problems. Two important linking lectures were on the work done by Thorbergsson and others on classifying isoparametric submanifolds of Euclidean spaces and the generalisation of these to Hilbert spaces due to Terng and others. Isoparametric submanifolds provides examples of minimal, taut submanifolds, of harmonic maps and submanifolds with parallel second fundamental form-all topics discussed at this workshop. There were also lectures on the rapidly developing topic of the affine geometry of hypersurfaces and on applications. Amomg the applications discussed are new methods for using PDE's for generating surfaces with special shapes for use in engineering design.

Geometry And Topology Of Submanifolds Vi - Pure And Applied Differential Geometry And The Theory Of Submanifolds

Geometry And Topology Of Submanifolds Vi - Pure And Applied Differential Geometry And The Theory Of Submanifolds PDF Author: Franki Dillen
Publisher: World Scientific
ISBN: 9814550655
Category :
Languages : en
Pages : 326

Get Book Here

Book Description
The topics covered are pure differential geometry, especially submanifolds and affine differential geometry, and applications of geometry to human vision, robotics, and gastro-entrology.

Geometry of Submanifolds

Geometry of Submanifolds PDF Author: Bang-Yen Chen
Publisher: Courier Dover Publications
ISBN: 0486832783
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
The first two chapters of this frequently cited reference provide background material in Riemannian geometry and the theory of submanifolds. Subsequent chapters explore minimal submanifolds, submanifolds with parallel mean curvature vector, conformally flat manifolds, and umbilical manifolds. The final chapter discusses geometric inequalities of submanifolds, results in Morse theory and their applications, and total mean curvature of a submanifold. Suitable for graduate students and mathematicians in the area of classical and modern differential geometries, the treatment is largely self-contained. Problems sets conclude each chapter, and an extensive bibliography provides background for students wishing to conduct further research in this area. This new edition includes the author's corrections.

Real Submanifolds in Complex Space and Their Mappings (PMS-47)

Real Submanifolds in Complex Space and Their Mappings (PMS-47) PDF Author: M. Salah Baouendi
Publisher: Princeton University Press
ISBN: 1400883962
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary.

Minimal Submanifolds In Pseudo-riemannian Geometry

Minimal Submanifolds In Pseudo-riemannian Geometry PDF Author: Henri Anciaux
Publisher: World Scientific
ISBN: 981446614X
Category : Mathematics
Languages : en
Pages : 184

Get Book Here

Book Description
Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case.For the first time, this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Kähler manifolds are given.

Differential Geometry of Lightlike Submanifolds

Differential Geometry of Lightlike Submanifolds PDF Author: Krishan L. Duggal
Publisher: Springer Science & Business Media
ISBN: 3034602510
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
This book presents research on the latest developments in differential geometry of lightlike (degenerate) subspaces. The main focus is on hypersurfaces and a variety of submanifolds of indefinite Kählerian, Sasakian and quaternion Kähler manifolds.

Submanifolds and Holonomy

Submanifolds and Holonomy PDF Author: Jurgen Berndt
Publisher: CRC Press
ISBN: 1482245167
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description
Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom