Author: Peter H. Kropholler
Publisher: Cambridge University Press
ISBN: 052163556X
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume reflects the fruitful connections between group theory and topology. It contains articles on cohomology, representation theory, geometric and combinatorial group theory. Some of the world's best known figures in this very active area of mathematics have made contributions, including substantial articles from Ol'shanskii, Mikhajlovskii, Carlson, Benson, Linnell, Wilson and Grigorchuk, which will be valuable reference works for some years to come. Pure mathematicians working in the fields of algebra, topology, and their interactions, will find this book of great interest.
Geometry and Cohomology in Group Theory
Author: Peter H. Kropholler
Publisher: Cambridge University Press
ISBN: 052163556X
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume reflects the fruitful connections between group theory and topology. It contains articles on cohomology, representation theory, geometric and combinatorial group theory. Some of the world's best known figures in this very active area of mathematics have made contributions, including substantial articles from Ol'shanskii, Mikhajlovskii, Carlson, Benson, Linnell, Wilson and Grigorchuk, which will be valuable reference works for some years to come. Pure mathematicians working in the fields of algebra, topology, and their interactions, will find this book of great interest.
Publisher: Cambridge University Press
ISBN: 052163556X
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume reflects the fruitful connections between group theory and topology. It contains articles on cohomology, representation theory, geometric and combinatorial group theory. Some of the world's best known figures in this very active area of mathematics have made contributions, including substantial articles from Ol'shanskii, Mikhajlovskii, Carlson, Benson, Linnell, Wilson and Grigorchuk, which will be valuable reference works for some years to come. Pure mathematicians working in the fields of algebra, topology, and their interactions, will find this book of great interest.
Geometric Group Theory
Author: Cornelia DruĊ£u
Publisher: American Mathematical Soc.
ISBN: 1470411040
Category : Mathematics
Languages : en
Pages : 841
Book Description
The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the first book in which geometric group theory is presented in a form accessible to advanced graduate students and young research mathematicians. It fills a big gap in the literature and will be used by researchers in geometric group theory and its applications.
Publisher: American Mathematical Soc.
ISBN: 1470411040
Category : Mathematics
Languages : en
Pages : 841
Book Description
The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the first book in which geometric group theory is presented in a form accessible to advanced graduate students and young research mathematicians. It fills a big gap in the literature and will be used by researchers in geometric group theory and its applications.
Topics in Cohomology of Groups
Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 9783540611813
Category : Mathematics
Languages : en
Pages : 236
Book Description
The book is a mostly translated reprint of a report on cohomology of groups from the 1950s and 1960s, originally written as background for the Artin-Tate notes on class field theory, following the cohomological approach. This report was first published (in French) by Benjamin. For this new English edition, the author added Tate's local duality, written up from letters which John Tate sent to Lang in 1958 - 1959. Except for this last item, which requires more substantial background in algebraic geometry and especially abelian varieties, the rest of the book is basically elementary, depending only on standard homological algebra at the level of first year graduate students.
Publisher: Springer Science & Business Media
ISBN: 9783540611813
Category : Mathematics
Languages : en
Pages : 236
Book Description
The book is a mostly translated reprint of a report on cohomology of groups from the 1950s and 1960s, originally written as background for the Artin-Tate notes on class field theory, following the cohomological approach. This report was first published (in French) by Benjamin. For this new English edition, the author added Tate's local duality, written up from letters which John Tate sent to Lang in 1958 - 1959. Except for this last item, which requires more substantial background in algebraic geometry and especially abelian varieties, the rest of the book is basically elementary, depending only on standard homological algebra at the level of first year graduate students.
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151)
Author: Michael Harris
Publisher: Princeton University Press
ISBN: 0691090920
Category : Mathematics
Languages : en
Pages : 287
Book Description
This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the "simple" Shimura varieties. These two problems go hand in hand. The results represent a major advance in algebraic number theory, finally proving the conjecture first proposed in Langlands's 1969 Washington lecture as a non-abelian generalization of local class field theory. The local Langlands conjecture for GLn(K), where K is a p-adic field, asserts the existence of a correspondence, with certain formal properties, relating n-dimensional representations of the Galois group of K with the representation theory of the locally compact group GLn(K). This book constructs a candidate for such a local Langlands correspondence on the vanishing cycles attached to the bad reduction over the integer ring of K of a certain family of Shimura varieties. And it proves that this is roughly compatible with the global Galois correspondence realized on the cohomology of the same Shimura varieties. The local Langlands conjecture is obtained as a corollary. Certain techniques developed in this book should extend to more general Shimura varieties, providing new instances of the local Langlands conjecture. Moreover, the geometry of the special fibers is strictly analogous to that of Shimura curves and can be expected to have applications to a variety of questions in number theory.
Publisher: Princeton University Press
ISBN: 0691090920
Category : Mathematics
Languages : en
Pages : 287
Book Description
This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the "simple" Shimura varieties. These two problems go hand in hand. The results represent a major advance in algebraic number theory, finally proving the conjecture first proposed in Langlands's 1969 Washington lecture as a non-abelian generalization of local class field theory. The local Langlands conjecture for GLn(K), where K is a p-adic field, asserts the existence of a correspondence, with certain formal properties, relating n-dimensional representations of the Galois group of K with the representation theory of the locally compact group GLn(K). This book constructs a candidate for such a local Langlands correspondence on the vanishing cycles attached to the bad reduction over the integer ring of K of a certain family of Shimura varieties. And it proves that this is roughly compatible with the global Galois correspondence realized on the cohomology of the same Shimura varieties. The local Langlands conjecture is obtained as a corollary. Certain techniques developed in this book should extend to more general Shimura varieties, providing new instances of the local Langlands conjecture. Moreover, the geometry of the special fibers is strictly analogous to that of Shimura curves and can be expected to have applications to a variety of questions in number theory.
Cohomology of Groups
Author: Kenneth S. Brown
Publisher: Springer Science & Business Media
ISBN: 1468493272
Category : Mathematics
Languages : en
Pages : 318
Book Description
Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.
Publisher: Springer Science & Business Media
ISBN: 1468493272
Category : Mathematics
Languages : en
Pages : 318
Book Description
Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.
Group Cohomology and Algebraic Cycles
Author: Burt Totaro
Publisher: Cambridge University Press
ISBN: 1107015774
Category : Mathematics
Languages : en
Pages : 245
Book Description
This book presents a coherent suite of computational tools for the study of group cohomology algebraic cycles.
Publisher: Cambridge University Press
ISBN: 1107015774
Category : Mathematics
Languages : en
Pages : 245
Book Description
This book presents a coherent suite of computational tools for the study of group cohomology algebraic cycles.
Geometric and Cohomological Methods in Group Theory
Author: Martin R. Bridson
Publisher: Cambridge University Press
ISBN: 052175724X
Category : Mathematics
Languages : en
Pages : 331
Book Description
An extended tour through a selection of the most important trends in modern geometric group theory.
Publisher: Cambridge University Press
ISBN: 052175724X
Category : Mathematics
Languages : en
Pages : 331
Book Description
An extended tour through a selection of the most important trends in modern geometric group theory.
Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31
Author: Frances Clare Kirwan
Publisher: Princeton University Press
ISBN: 0691214565
Category : Mathematics
Languages : en
Pages : 216
Book Description
These notes describe a general procedure for calculating the Betti numbers of the projective quotient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These quotient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions.
Publisher: Princeton University Press
ISBN: 0691214565
Category : Mathematics
Languages : en
Pages : 216
Book Description
These notes describe a general procedure for calculating the Betti numbers of the projective quotient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These quotient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions.
Geometric and Cohomological Group Theory
Author: Peter H. Kropholler
Publisher: Cambridge University Press
ISBN: 131662322X
Category : Mathematics
Languages : en
Pages : 277
Book Description
Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.
Publisher: Cambridge University Press
ISBN: 131662322X
Category : Mathematics
Languages : en
Pages : 277
Book Description
Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.
Local Fields
Author: Jean-Pierre Serre
Publisher: Springer Science & Business Media
ISBN: 1475756739
Category : Mathematics
Languages : en
Pages : 249
Book Description
The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray.
Publisher: Springer Science & Business Media
ISBN: 1475756739
Category : Mathematics
Languages : en
Pages : 249
Book Description
The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray.