Author: John Rundle
Publisher: American Geophysical Union
ISBN: 0875909787
Category : Nature
Languages : en
Pages : 288
Book Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 120. Earthquakes in urban centers are capable of causing enormous damage. The January 16, 1995 Kobe, Japan earthquake was only a magnitude 6.9 event and yet produced an estimated $200 billion loss. Despite an active earthquake prediction program in Japan, this event was a complete surprise. Similar scenarios are possible in Los Angeles, San Francisco, Seattle, and other urban centers around the Pacific plate boundary. The development of forecast or prediction methodologies for these great damaging earthquakes has been complicated by the fact that the largest events repeat at irregular intervals of hundreds to thousands of years, resulting in a limited historical record that has frustrated phenomenological studies. The papers in this book describe an emerging alternative approach, which is based on a new understanding of earthquake physics arising from the construction and analysis of numerical simulations. With these numerical simulations, earthquake physics now can be investigated in numerical laboratories. Simulation data from numerical experiments can be used to develop theoretical understanding that can be subsequently applied to observed data. These methods have been enabled by the information technology revolution, in which fundamental advances in computing and communications are placing vast computational resources at our disposal.
Geocomplexity and the Physics of Earthquakes
Author: John Rundle
Publisher: American Geophysical Union
ISBN: 0875909787
Category : Nature
Languages : en
Pages : 288
Book Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 120. Earthquakes in urban centers are capable of causing enormous damage. The January 16, 1995 Kobe, Japan earthquake was only a magnitude 6.9 event and yet produced an estimated $200 billion loss. Despite an active earthquake prediction program in Japan, this event was a complete surprise. Similar scenarios are possible in Los Angeles, San Francisco, Seattle, and other urban centers around the Pacific plate boundary. The development of forecast or prediction methodologies for these great damaging earthquakes has been complicated by the fact that the largest events repeat at irregular intervals of hundreds to thousands of years, resulting in a limited historical record that has frustrated phenomenological studies. The papers in this book describe an emerging alternative approach, which is based on a new understanding of earthquake physics arising from the construction and analysis of numerical simulations. With these numerical simulations, earthquake physics now can be investigated in numerical laboratories. Simulation data from numerical experiments can be used to develop theoretical understanding that can be subsequently applied to observed data. These methods have been enabled by the information technology revolution, in which fundamental advances in computing and communications are placing vast computational resources at our disposal.
Publisher: American Geophysical Union
ISBN: 0875909787
Category : Nature
Languages : en
Pages : 288
Book Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 120. Earthquakes in urban centers are capable of causing enormous damage. The January 16, 1995 Kobe, Japan earthquake was only a magnitude 6.9 event and yet produced an estimated $200 billion loss. Despite an active earthquake prediction program in Japan, this event was a complete surprise. Similar scenarios are possible in Los Angeles, San Francisco, Seattle, and other urban centers around the Pacific plate boundary. The development of forecast or prediction methodologies for these great damaging earthquakes has been complicated by the fact that the largest events repeat at irregular intervals of hundreds to thousands of years, resulting in a limited historical record that has frustrated phenomenological studies. The papers in this book describe an emerging alternative approach, which is based on a new understanding of earthquake physics arising from the construction and analysis of numerical simulations. With these numerical simulations, earthquake physics now can be investigated in numerical laboratories. Simulation data from numerical experiments can be used to develop theoretical understanding that can be subsequently applied to observed data. These methods have been enabled by the information technology revolution, in which fundamental advances in computing and communications are placing vast computational resources at our disposal.
Physics Of Self-organization Systems (With Cd-rom) - Proceedings Of The 5th 21st Century Coe Symposium
Author: Shin'ichi Ishiwata
Publisher: World Scientific
ISBN: 9814471690
Category : Science
Languages : en
Pages : 250
Book Description
This volume presents the new objectives of physics on self-organizing systems composed of multi-components, in order to create a new field and establish universal comprehension in physics. The book covers broad topics such as the thermodynamic time asymmetry in both transient and stationary nonequilibrium states, the seriousness of auxiliary conditions in physicochemical processes and biological systems, the quantum-classical and micro-macro interfaces which are familiar in mesoscopic physics, the purification scheme of quantum entanglement, topics on gamma-ray bursts, and the walking mechanism of single molecular motors.
Publisher: World Scientific
ISBN: 9814471690
Category : Science
Languages : en
Pages : 250
Book Description
This volume presents the new objectives of physics on self-organizing systems composed of multi-components, in order to create a new field and establish universal comprehension in physics. The book covers broad topics such as the thermodynamic time asymmetry in both transient and stationary nonequilibrium states, the seriousness of auxiliary conditions in physicochemical processes and biological systems, the quantum-classical and micro-macro interfaces which are familiar in mesoscopic physics, the purification scheme of quantum entanglement, topics on gamma-ray bursts, and the walking mechanism of single molecular motors.
Geodetic And Geophysical Effects Associated With Seismic And Volcanic Hazards
Author: José Fernandez
Publisher: Springer
ISBN: 3034878974
Category : Science
Languages : en
Pages : 324
Book Description
Although geodetic monitoring techniques have been widely used in areas of seismic or volcanic activity, the difficulty inherent to their discrete nature means that they must be deployed carefully to ensure the best possible detection or sensitivity of these points (see e. g. , BALDI and UNGUENDOLI, 1987; JOHNSON and WYATT, 1994; SEGALL and MATTHEWS, 1997; Yu et al. , 2000). In many cases, a more global monitoring method, is required yet at the same time one that offers the highest level of sensitivity which enables detection of the phenomenon. Interferometry radar (InSAR) techniques have been shown to play an important role in seismic and volcanic monitoring because they cover large areas (100 x 100 km) and can be easily systematized in monitoring (see e. g. , MASSONNET and FEIGL, 1998; BDRGMANN et al. , 2000; MASSONNET and SIGMUNDSON, 2000; HANSSEN, 2001). The limitations inherent to the GPS and InSAR techniques (mainly observations at discrete surface points in the case of GPS and existence of non-coherent areas and the fact that, at present, the three displacement components cannot be obtained in SAR interferometry) can be overcome by using them together or other techniques (e. g. , PUGLISI and COLTELLI, 2001; RODRiGUEZ-VELASCO et al. , 2002; FERNANDEZ et al. , 2003).
Publisher: Springer
ISBN: 3034878974
Category : Science
Languages : en
Pages : 324
Book Description
Although geodetic monitoring techniques have been widely used in areas of seismic or volcanic activity, the difficulty inherent to their discrete nature means that they must be deployed carefully to ensure the best possible detection or sensitivity of these points (see e. g. , BALDI and UNGUENDOLI, 1987; JOHNSON and WYATT, 1994; SEGALL and MATTHEWS, 1997; Yu et al. , 2000). In many cases, a more global monitoring method, is required yet at the same time one that offers the highest level of sensitivity which enables detection of the phenomenon. Interferometry radar (InSAR) techniques have been shown to play an important role in seismic and volcanic monitoring because they cover large areas (100 x 100 km) and can be easily systematized in monitoring (see e. g. , MASSONNET and FEIGL, 1998; BDRGMANN et al. , 2000; MASSONNET and SIGMUNDSON, 2000; HANSSEN, 2001). The limitations inherent to the GPS and InSAR techniques (mainly observations at discrete surface points in the case of GPS and existence of non-coherent areas and the fact that, at present, the three displacement components cannot be obtained in SAR interferometry) can be overcome by using them together or other techniques (e. g. , PUGLISI and COLTELLI, 2001; RODRiGUEZ-VELASCO et al. , 2002; FERNANDEZ et al. , 2003).
Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part II
Author: Mitsuhiro Matsu'ura
Publisher: Birkhäuser
ISBN: 3034881975
Category : Science
Languages : en
Pages : 360
Book Description
In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change.
Publisher: Birkhäuser
ISBN: 3034881975
Category : Science
Languages : en
Pages : 360
Book Description
In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change.
Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I
Author: Mitsuhiro Matsu'ura
Publisher: Birkhäuser
ISBN: 3034882033
Category : Science
Languages : en
Pages : 389
Book Description
In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics covered in Part I range from the microscopic simulation and laboratory studies of rock fracture and the underlying mechanism for nucleation and catastrophic failure to the development of theoretical models of frictional behaviors of faults; as well as the simulation studies of dynamic rupture processes and seismic wave propagation in a 3-D heterogeneous medium, to the case studies of strong ground motions from the 1999 Chi-Chi earthquake and seismic hazard estimation for Cascadian subduction zone earthquakes.
Publisher: Birkhäuser
ISBN: 3034882033
Category : Science
Languages : en
Pages : 389
Book Description
In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics covered in Part I range from the microscopic simulation and laboratory studies of rock fracture and the underlying mechanism for nucleation and catastrophic failure to the development of theoretical models of frictional behaviors of faults; as well as the simulation studies of dynamic rupture processes and seismic wave propagation in a 3-D heterogeneous medium, to the case studies of strong ground motions from the 1999 Chi-Chi earthquake and seismic hazard estimation for Cascadian subduction zone earthquakes.
Computational Earthquake Physics: Simulations, Analysis and Infrastructure
Author: Xiang-chu Yin
Publisher: Springer Science & Business Media
ISBN: 3764381302
Category : Science
Languages : en
Pages : 330
Book Description
This second part of a two-volume work contains 22 research articles on various aspects of computational earthquake physics. Coverage includes the promising earthquake forecasting model LURR (Load-Unload Response Ratio); pattern informatics and phase dynamics and their applications; computational algorithms, including continuum damage models and visualization and analysis of geophysical datasets; and assimilation of data.
Publisher: Springer Science & Business Media
ISBN: 3764381302
Category : Science
Languages : en
Pages : 330
Book Description
This second part of a two-volume work contains 22 research articles on various aspects of computational earthquake physics. Coverage includes the promising earthquake forecasting model LURR (Load-Unload Response Ratio); pattern informatics and phase dynamics and their applications; computational algorithms, including continuum damage models and visualization and analysis of geophysical datasets; and assimilation of data.
The Laws of Motion
Author: Linley Erin Hall
Publisher: The Rosen Publishing Group, Inc
ISBN: 9781404204089
Category : Science
Languages : en
Pages : 204
Book Description
From soccer kicks to the flight of birds, anthology offers the latest thinking on principles of physics and how they manifest in everyday life.
Publisher: The Rosen Publishing Group, Inc
ISBN: 9781404204089
Category : Science
Languages : en
Pages : 204
Book Description
From soccer kicks to the flight of birds, anthology offers the latest thinking on principles of physics and how they manifest in everyday life.
Earthquake Science and Seismic Risk Reduction
Author: Francesco Mulargia
Publisher: Springer Science & Business Media
ISBN: 9781402017773
Category : Earthquake engineering
Languages : en
Pages : 366
Book Description
Publisher: Springer Science & Business Media
ISBN: 9781402017773
Category : Earthquake engineering
Languages : en
Pages : 366
Book Description
Earthquake Science and Seismic Risk Reduction
Author: F. Mulargia
Publisher: Springer Science & Business Media
ISBN: 9401000417
Category : Science
Languages : en
Pages : 366
Book Description
What is the first thing that ordinary people, for whom journalists are the proxy, ask when they meet a seismologist? It is certainly nothing technical like "What was the stress drop of the last earthquake in the Imperial Valley?" It is a sim ple question, which nevertheless summarizes the real demands that society has for seismology. This question is "Can you predict earthquakes?" Regrettably, notwithstanding the feeling of omnipotence induced by modem technology, the answer at present is the very opposite of "Yes, of course". The primary motivation for the question "Can you predict earthquakes?" is practical. No other natural phenomenon has the tremendous destructive power of a large earthquake, a power which is rivaled only by a large scale war. An earth quake in a highly industrialized region is capable of adversely affecting the econ omy of the whole world for several years. But another motivation is cognitive. The aim of science is 'understanding' nature, and one of the best ways to show that we understand a phenomenon is the ability to make accurate predictions.
Publisher: Springer Science & Business Media
ISBN: 9401000417
Category : Science
Languages : en
Pages : 366
Book Description
What is the first thing that ordinary people, for whom journalists are the proxy, ask when they meet a seismologist? It is certainly nothing technical like "What was the stress drop of the last earthquake in the Imperial Valley?" It is a sim ple question, which nevertheless summarizes the real demands that society has for seismology. This question is "Can you predict earthquakes?" Regrettably, notwithstanding the feeling of omnipotence induced by modem technology, the answer at present is the very opposite of "Yes, of course". The primary motivation for the question "Can you predict earthquakes?" is practical. No other natural phenomenon has the tremendous destructive power of a large earthquake, a power which is rivaled only by a large scale war. An earth quake in a highly industrialized region is capable of adversely affecting the econ omy of the whole world for several years. But another motivation is cognitive. The aim of science is 'understanding' nature, and one of the best ways to show that we understand a phenomenon is the ability to make accurate predictions.
Computational earthquake science. 2
Author: Andrea Donnellan
Publisher: Springer Science & Business Media
ISBN: 9783764371432
Category : Nature
Languages : en
Pages : 360
Book Description
Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle. Through workshops, collaborations and publications, the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic supercomputer simulation models for the complete earthquake generation process, thus providing a "virtual laboratory" to probe earthquake behavior. Part II of the book embraces dynamic rupture and wave propagation, computational environment and algorithms, data assimilation and understanding, and applications of models to earthquakes. This part also contains articles on the computational approaches and challenges of constructing earthquake models.
Publisher: Springer Science & Business Media
ISBN: 9783764371432
Category : Nature
Languages : en
Pages : 360
Book Description
Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle. Through workshops, collaborations and publications, the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic supercomputer simulation models for the complete earthquake generation process, thus providing a "virtual laboratory" to probe earthquake behavior. Part II of the book embraces dynamic rupture and wave propagation, computational environment and algorithms, data assimilation and understanding, and applications of models to earthquakes. This part also contains articles on the computational approaches and challenges of constructing earthquake models.