Longitudinal Data Analysis

Longitudinal Data Analysis PDF Author: Garrett Fitzmaurice
Publisher: CRC Press
ISBN: 142001157X
Category : Mathematics
Languages : en
Pages : 633

Get Book Here

Book Description
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory

Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data

Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data PDF Author: Brajendra C. Sutradhar
Publisher: Springer
ISBN: 331931260X
Category : Mathematics
Languages : en
Pages : 267

Get Book Here

Book Description
This proceedings volume contains eight selected papers that were presented in the International Symposium in Statistics (ISS) 2015 On Advances in Parametric and Semi-parametric Analysis of Multivariate, Time Series, Spatial-temporal, and Familial-longitudinal Data, held in St. John’s, Canada from July 6 to 8, 2015. The main objective of the ISS-2015 was the discussion on advances and challenges in parametric and semi-parametric analysis for correlated data in both continuous and discrete setups. Thus, as a reflection of the theme of the symposium, the eight papers of this proceedings volume are presented in four parts. Part I is comprised of papers examining Elliptical t Distribution Theory. In Part II, the papers cover spatial and temporal data analysis. Part III is focused on longitudinal multinomial models in parametric and semi-parametric setups. Finally Part IV concludes with a paper on the inferences for longitudinal data subject to a challenge of important covariates selection from a set of large number of covariates available for the individuals in the study.

Mixed Effects Models for Complex Data

Mixed Effects Models for Complex Data PDF Author: Lang Wu
Publisher: CRC Press
ISBN: 9781420074086
Category : Mathematics
Languages : en
Pages : 431

Get Book Here

Book Description
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.

Joint Modeling of Longitudinal and Time-to-Event Data

Joint Modeling of Longitudinal and Time-to-Event Data PDF Author: Robert Elashoff
Publisher: CRC Press
ISBN: 1439807833
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Longitudinal studies often incur several problems that challenge standard statistical methods for data analysis. These problems include non-ignorable missing data in longitudinal measurements of one or more response variables, informative observation times of longitudinal data, and survival analysis with intermittently measured time-dependent covariates that are subject to measurement error and/or substantial biological variation. Joint modeling of longitudinal and time-to-event data has emerged as a novel approach to handle these issues. Joint Modeling of Longitudinal and Time-to-Event Data provides a systematic introduction and review of state-of-the-art statistical methodology in this active research field. The methods are illustrated by real data examples from a wide range of clinical research topics. A collection of data sets and software for practical implementation of the joint modeling methodologies are available through the book website. This book serves as a reference book for scientific investigators who need to analyze longitudinal and/or survival data, as well as researchers developing methodology in this field. It may also be used as a textbook for a graduate level course in biostatistics or statistics.

Time-Varying Effect Modeling for the Behavioral, Social, and Health Sciences

Time-Varying Effect Modeling for the Behavioral, Social, and Health Sciences PDF Author: Stephanie T. Lanza
Publisher: Springer Nature
ISBN: 3030709442
Category : Psychology
Languages : en
Pages : 150

Get Book Here

Book Description
This book is the first to introduce applied behavioral, social, and health sciences researchers to a new analytic method, the time-varying effect model (TVEM). It details how TVEM may be used to advance research on developmental and dynamic processes by examining how associations between variables change across time. The book describes how TVEM is a direct and intuitive extension of standard linear regression; whereas standard linear regression coefficients are static estimates that do not change with time, TVEM coefficients are allowed to change as continuous functions of real time, including developmental age, historical time, time of day, days since an event, and so forth. The book introduces readers to new research questions that can be addressed by applying TVEM in their research. Readers gain the practical skills necessary for specifying a wide variety of time-varying effect models, including those with continuous, binary, and count outcomes. The book presents technical details of TVEM estimation and three novel empirical studies focused on developmental questions using TVEM to estimate age-varying effects, historical shifts in behavior and attitudes, and real-time changes across days relative to an event. The volume provides a walkthrough of the process for conducting each of these studies, presenting decisions that were made, and offering sufficient detail so that readers may embark on similar studies in their own research. The book concludes with comments about additional uses of TVEM in applied research as well as software considerations and future directions. Throughout the book, proper interpretation of the output provided by TVEM is emphasized. Time-Varying Effect Modeling for the Behavioral, Social, and Health Sciences is an essential resource for researchers, clinicians/practitioners as well as graduate students in developmental psychology, public health, statistics and methodology for the social, behavioral, developmental, and public health sciences.

The Work of Raymond J. Carroll

The Work of Raymond J. Carroll PDF Author: Marie Davidian
Publisher: Springer
ISBN: 3319058010
Category : Mathematics
Languages : en
Pages : 599

Get Book Here

Book Description
This volume contains Raymond J. Carroll's research and commentary on its impact by leading statisticians. Each of the seven main parts focuses on a key research area: Measurement Error, Transformation and Weighting, Epidemiology, Nonparametric and Semiparametric Regression for Independent Data, Nonparametric and Semiparametric Regression for Dependent Data, Robustness, and other work. The seven subject areas reviewed in this book were chosen by Ray himself, as were the articles representing each area. The commentaries not only review Ray’s work, but are also filled with history and anecdotes. Raymond J. Carroll’s impact on statistics and numerous other fields of science is far-reaching. His vast catalog of work spans from fundamental contributions to statistical theory to innovative methodological development and new insights in disciplinary science. From the outset of his career, rather than taking the “safe” route of pursuing incremental advances, Ray has focused on tackling the most important challenges. In doing so, it is fair to say that he has defined a host of statistics areas, including weighting and transformation in regression, measurement error modeling, quantitative methods for nutritional epidemiology and non- and semiparametric regression.

Multivariate Statistical Modelling Based on Generalized Linear Models

Multivariate Statistical Modelling Based on Generalized Linear Models PDF Author: Ludwig Fahrmeir
Publisher: Springer Science & Business Media
ISBN: 1475734549
Category : Mathematics
Languages : en
Pages : 537

Get Book Here

Book Description
The book is aimed at applied statisticians, graduate students of statistics, and students and researchers with a strong interest in statistics and data analysis. This second edition is extensively revised, especially those sections relating with Bayesian concepts.

Joint Models for Longitudinal and Time-to-Event Data

Joint Models for Longitudinal and Time-to-Event Data PDF Author: Dimitris Rizopoulos
Publisher: CRC Press
ISBN: 1439872864
Category : Mathematics
Languages : en
Pages : 279

Get Book Here

Book Description
In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models. All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author. All the R code used in the book is available at: http://jmr.r-forge.r-project.org/

Linear and Generalized Linear Mixed Models and Their Applications

Linear and Generalized Linear Mixed Models and Their Applications PDF Author: Jiming Jiang
Publisher: Springer Nature
ISBN: 1071612824
Category : Medical
Languages : en
Pages : 343

Get Book Here

Book Description
This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.

Bayesian Survival Analysis

Bayesian Survival Analysis PDF Author: Joseph G. Ibrahim
Publisher: Springer Science & Business Media
ISBN: 9780387952772
Category : Mathematics
Languages : en
Pages : 504

Get Book Here

Book Description
Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.