Author: Etienne Bézout
Publisher: Princeton University Press
ISBN: 1400826969
Category : Mathematics
Languages : en
Pages : 363
Book Description
This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stated as follows: "The degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns and with arbitrary degrees is equal to the product of the exponents of the degrees of these equations." The book offers large numbers of results and insights about conditions for polynomials to share a common factor, or to share a common root. It also provides a state-of-the-art analysis of the theories of integration and differentiation of functions in the late eighteenth century, as well as one of the first uses of determinants to solve systems of linear equations. Polynomial multiplier methods have become, today, one of the most promising approaches to solving complex systems of polynomial equations or inequalities, and this translation offers a valuable historic perspective on this active research field.
General Theory of Algebraic Equations
Author: Etienne Bézout
Publisher: Princeton University Press
ISBN: 1400826969
Category : Mathematics
Languages : en
Pages : 363
Book Description
This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stated as follows: "The degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns and with arbitrary degrees is equal to the product of the exponents of the degrees of these equations." The book offers large numbers of results and insights about conditions for polynomials to share a common factor, or to share a common root. It also provides a state-of-the-art analysis of the theories of integration and differentiation of functions in the late eighteenth century, as well as one of the first uses of determinants to solve systems of linear equations. Polynomial multiplier methods have become, today, one of the most promising approaches to solving complex systems of polynomial equations or inequalities, and this translation offers a valuable historic perspective on this active research field.
Publisher: Princeton University Press
ISBN: 1400826969
Category : Mathematics
Languages : en
Pages : 363
Book Description
This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stated as follows: "The degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns and with arbitrary degrees is equal to the product of the exponents of the degrees of these equations." The book offers large numbers of results and insights about conditions for polynomials to share a common factor, or to share a common root. It also provides a state-of-the-art analysis of the theories of integration and differentiation of functions in the late eighteenth century, as well as one of the first uses of determinants to solve systems of linear equations. Polynomial multiplier methods have become, today, one of the most promising approaches to solving complex systems of polynomial equations or inequalities, and this translation offers a valuable historic perspective on this active research field.
Algebraic Equations
Author: Edgar Dehn
Publisher: Courier Corporation
ISBN: 0486155102
Category : Mathematics
Languages : en
Pages : 225
Book Description
Focusing on basics of algebraic theory, this text presents detailed explanations of integral functions, permutations, and groups as well as Lagrange and Galois theory. Many numerical examples with complete solutions. 1930 edition.
Publisher: Courier Corporation
ISBN: 0486155102
Category : Mathematics
Languages : en
Pages : 225
Book Description
Focusing on basics of algebraic theory, this text presents detailed explanations of integral functions, permutations, and groups as well as Lagrange and Galois theory. Many numerical examples with complete solutions. 1930 edition.
Galois' Theory Of Algebraic Equations (Second Edition)
Author: Jean-pierre Tignol
Publisher: World Scientific Publishing Company
ISBN: 9814704717
Category : Mathematics
Languages : en
Pages : 325
Book Description
The book gives a detailed account of the development of the theory of algebraic equations, from its origins in ancient times to its completion by Galois in the nineteenth century. The appropriate parts of works by Cardano, Lagrange, Vandermonde, Gauss, Abel, and Galois are reviewed and placed in their historical perspective, with the aim of conveying to the reader a sense of the way in which the theory of algebraic equations has evolved and has led to such basic mathematical notions as 'group' and 'field'. A brief discussion of the fundamental theorems of modern Galois theory and complete proofs of the quoted results are provided, and the material is organized in such a way that the more technical details can be skipped by readers who are interested primarily in a broad survey of the theory.In this second edition, the exposition has been improved throughout and the chapter on Galois has been entirely rewritten to better reflect Galois' highly innovative contributions. The text now follows more closely Galois' memoir, resorting as sparsely as possible to anachronistic modern notions such as field extensions. The emerging picture is a surprisingly elementary approach to the solvability of equations by radicals, and yet is unexpectedly close to some of the most recent methods of Galois theory.
Publisher: World Scientific Publishing Company
ISBN: 9814704717
Category : Mathematics
Languages : en
Pages : 325
Book Description
The book gives a detailed account of the development of the theory of algebraic equations, from its origins in ancient times to its completion by Galois in the nineteenth century. The appropriate parts of works by Cardano, Lagrange, Vandermonde, Gauss, Abel, and Galois are reviewed and placed in their historical perspective, with the aim of conveying to the reader a sense of the way in which the theory of algebraic equations has evolved and has led to such basic mathematical notions as 'group' and 'field'. A brief discussion of the fundamental theorems of modern Galois theory and complete proofs of the quoted results are provided, and the material is organized in such a way that the more technical details can be skipped by readers who are interested primarily in a broad survey of the theory.In this second edition, the exposition has been improved throughout and the chapter on Galois has been entirely rewritten to better reflect Galois' highly innovative contributions. The text now follows more closely Galois' memoir, resorting as sparsely as possible to anachronistic modern notions such as field extensions. The emerging picture is a surprisingly elementary approach to the solvability of equations by radicals, and yet is unexpectedly close to some of the most recent methods of Galois theory.
Algebra
Author: Siegfried Bosch
Publisher: Springer
ISBN: 3319951777
Category : Mathematics
Languages : en
Pages : 369
Book Description
The material presented here can be divided into two parts. The first, sometimes referred to as abstract algebra, is concerned with the general theory of algebraic objects such as groups, rings, and fields, hence, with topics that are also basic for a number of other domains in mathematics. The second centers around Galois theory and its applications. Historically, this theory originated from the problem of studying algebraic equations, a problem that, after various unsuccessful attempts to determine solution formulas in higher degrees, found its complete clarification through the brilliant ideas of E. Galois. The study of algebraic equations has served as a motivating terrain for a large part of abstract algebra, and according to this, algebraic equations are visible as a guiding thread throughout the book. To underline this point, an introduction to the history of algebraic equations is included. The entire book is self-contained, up to a few prerequisites from linear algebra. It covers most topics of current algebra courses and is enriched by several optional sections that complement the standard program or, in some cases, provide a first view on nearby areas that are more advanced. Every chapter begins with an introductory section on "Background and Overview," motivating the material that follows and discussing its highlights on an informal level. Furthermore, each section ends with a list of specially adapted exercises, some of them with solution proposals in the appendix. The present English edition is a translation and critical revision of the eighth German edition of the Algebra book by the author. The book appeared for the first time in 1993 and, in later years, was complemented by adding a variety of related topics. At the same time it was modified and polished to keep its contents up to date.
Publisher: Springer
ISBN: 3319951777
Category : Mathematics
Languages : en
Pages : 369
Book Description
The material presented here can be divided into two parts. The first, sometimes referred to as abstract algebra, is concerned with the general theory of algebraic objects such as groups, rings, and fields, hence, with topics that are also basic for a number of other domains in mathematics. The second centers around Galois theory and its applications. Historically, this theory originated from the problem of studying algebraic equations, a problem that, after various unsuccessful attempts to determine solution formulas in higher degrees, found its complete clarification through the brilliant ideas of E. Galois. The study of algebraic equations has served as a motivating terrain for a large part of abstract algebra, and according to this, algebraic equations are visible as a guiding thread throughout the book. To underline this point, an introduction to the history of algebraic equations is included. The entire book is self-contained, up to a few prerequisites from linear algebra. It covers most topics of current algebra courses and is enriched by several optional sections that complement the standard program or, in some cases, provide a first view on nearby areas that are more advanced. Every chapter begins with an introductory section on "Background and Overview," motivating the material that follows and discussing its highlights on an informal level. Furthermore, each section ends with a list of specially adapted exercises, some of them with solution proposals in the appendix. The present English edition is a translation and critical revision of the eighth German edition of the Algebra book by the author. The book appeared for the first time in 1993 and, in later years, was complemented by adding a variety of related topics. At the same time it was modified and polished to keep its contents up to date.
Introduction to Algebraic Geometry
Author: Serge Lang
Publisher: Courier Dover Publications
ISBN: 048683980X
Category : Mathematics
Languages : en
Pages : 273
Book Description
Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.
Publisher: Courier Dover Publications
ISBN: 048683980X
Category : Mathematics
Languages : en
Pages : 273
Book Description
Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.
The General Theory of Relativity
Author: Anadijiban Das
Publisher: Springer Science & Business Media
ISBN: 1461436583
Category : Science
Languages : en
Pages : 694
Book Description
The General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are not limited to: tensor analysis the special theory of relativity the general theory of relativity and Einstein’s field equations spherically symmetric solutions and experimental confirmations static and stationary space-time domains black holes cosmological models algebraic classifications and the Newman-Penrose equations the coupled Einstein-Maxwell-Klein-Gordon equations appendices covering mathematical supplements and special topics Mathematical rigor, yet very clear presentation of the topics make this book a unique text for both university students and research scholars. Anadijiban Das has taught courses on Relativity Theory at The University College of Dublin, Ireland, Jadavpur University, India, Carnegie-Mellon University, USA, and Simon Fraser University, Canada. His major areas of research include, among diverse topics, the mathematical aspects of general relativity theory. Andrew DeBenedictis has taught courses in Theoretical Physics at Simon Fraser University, Canada, and is also a member of The Pacific Institute for the Mathematical Sciences. His research interests include quantum gravity, classical gravity, and semi-classical gravity.
Publisher: Springer Science & Business Media
ISBN: 1461436583
Category : Science
Languages : en
Pages : 694
Book Description
The General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are not limited to: tensor analysis the special theory of relativity the general theory of relativity and Einstein’s field equations spherically symmetric solutions and experimental confirmations static and stationary space-time domains black holes cosmological models algebraic classifications and the Newman-Penrose equations the coupled Einstein-Maxwell-Klein-Gordon equations appendices covering mathematical supplements and special topics Mathematical rigor, yet very clear presentation of the topics make this book a unique text for both university students and research scholars. Anadijiban Das has taught courses on Relativity Theory at The University College of Dublin, Ireland, Jadavpur University, India, Carnegie-Mellon University, USA, and Simon Fraser University, Canada. His major areas of research include, among diverse topics, the mathematical aspects of general relativity theory. Andrew DeBenedictis has taught courses in Theoretical Physics at Simon Fraser University, Canada, and is also a member of The Pacific Institute for the Mathematical Sciences. His research interests include quantum gravity, classical gravity, and semi-classical gravity.
The Theory of Equations
Author: William Snow Burnside
Publisher:
ISBN:
Category : Determinants
Languages : en
Pages : 368
Book Description
Publisher:
ISBN:
Category : Determinants
Languages : en
Pages : 368
Book Description
Categories for Types
Author: Roy L. Crole
Publisher: Cambridge University Press
ISBN: 9780521457019
Category : Computers
Languages : en
Pages : 362
Book Description
This textbook explains the basic principles of categorical type theory and the techniques used to derive categorical semantics for specific type theories. It introduces the reader to ordered set theory, lattices and domains, and this material provides plenty of examples for an introduction to category theory, which covers categories, functors, natural transformations, the Yoneda lemma, cartesian closed categories, limits, adjunctions and indexed categories. Four kinds of formal system are considered in detail, namely algebraic, functional, polymorphic functional, and higher order polymorphic functional type theory. For each of these the categorical semantics are derived and results about the type systems are proved categorically. Issues of soundness and completeness are also considered. Aimed at advanced undergraduates and beginning graduates, this book will be of interest to theoretical computer scientists, logicians and mathematicians specializing in category theory.
Publisher: Cambridge University Press
ISBN: 9780521457019
Category : Computers
Languages : en
Pages : 362
Book Description
This textbook explains the basic principles of categorical type theory and the techniques used to derive categorical semantics for specific type theories. It introduces the reader to ordered set theory, lattices and domains, and this material provides plenty of examples for an introduction to category theory, which covers categories, functors, natural transformations, the Yoneda lemma, cartesian closed categories, limits, adjunctions and indexed categories. Four kinds of formal system are considered in detail, namely algebraic, functional, polymorphic functional, and higher order polymorphic functional type theory. For each of these the categorical semantics are derived and results about the type systems are proved categorically. Issues of soundness and completeness are also considered. Aimed at advanced undergraduates and beginning graduates, this book will be of interest to theoretical computer scientists, logicians and mathematicians specializing in category theory.
Elementary Theory of Equations
Author: Leonard Eugene Dickson
Publisher:
ISBN:
Category : Equations, Theory of
Languages : en
Pages : 200
Book Description
Publisher:
ISBN:
Category : Equations, Theory of
Languages : en
Pages : 200
Book Description
Differential-algebraic Equations
Author: Peter Kunkel
Publisher: European Mathematical Society
ISBN: 9783037190173
Category : Boundary value problems
Languages : en
Pages : 396
Book Description
Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.
Publisher: European Mathematical Society
ISBN: 9783037190173
Category : Boundary value problems
Languages : en
Pages : 396
Book Description
Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.