Author: Liz Parfitt
Publisher: John Wiley & Sons
ISBN: 1444307568
Category : Science
Languages : en
Pages : 256
Book Description
Fundamentals of Physical Volcanology is a comprehensive overview ofthe processes that control when and how volcanoes erupt.Understanding these processes involves bringing together ideas froma number of disciplines, including branches of geology, such aspetrology and geochemistry; and aspects of physics, such as fluiddynamics and thermodynamics. This book explains in accessible terms how different areas ofscience have been combined to reach our current level of knowledgeof volcanic systems. It includes an introduction to eruption types,an outline of the development of physical volcanology, acomprehensive overview of subsurface processes, eruptionmechanisms, the nature of volcanic eruptions and their products,and a review of how volcanoes affect the environment. Fundamentals of Physical Volcanology is essential reading forundergraduate students in earth science.
Fundamentals of Physical Volcanology
Author: Liz Parfitt
Publisher: John Wiley & Sons
ISBN: 1444307568
Category : Science
Languages : en
Pages : 256
Book Description
Fundamentals of Physical Volcanology is a comprehensive overview ofthe processes that control when and how volcanoes erupt.Understanding these processes involves bringing together ideas froma number of disciplines, including branches of geology, such aspetrology and geochemistry; and aspects of physics, such as fluiddynamics and thermodynamics. This book explains in accessible terms how different areas ofscience have been combined to reach our current level of knowledgeof volcanic systems. It includes an introduction to eruption types,an outline of the development of physical volcanology, acomprehensive overview of subsurface processes, eruptionmechanisms, the nature of volcanic eruptions and their products,and a review of how volcanoes affect the environment. Fundamentals of Physical Volcanology is essential reading forundergraduate students in earth science.
Publisher: John Wiley & Sons
ISBN: 1444307568
Category : Science
Languages : en
Pages : 256
Book Description
Fundamentals of Physical Volcanology is a comprehensive overview ofthe processes that control when and how volcanoes erupt.Understanding these processes involves bringing together ideas froma number of disciplines, including branches of geology, such aspetrology and geochemistry; and aspects of physics, such as fluiddynamics and thermodynamics. This book explains in accessible terms how different areas ofscience have been combined to reach our current level of knowledgeof volcanic systems. It includes an introduction to eruption types,an outline of the development of physical volcanology, acomprehensive overview of subsurface processes, eruptionmechanisms, the nature of volcanic eruptions and their products,and a review of how volcanoes affect the environment. Fundamentals of Physical Volcanology is essential reading forundergraduate students in earth science.
Volcanism
Author: Hans-Ulrich Schmincke
Publisher: Springer Science & Business Media
ISBN: 9783540436508
Category : Science
Languages : en
Pages : 342
Book Description
Volcanic eruptions are the clear and dramatic expression of dynamic processes in planet Earth. The author, one of the most profound specialists in the field of volcanology, explains in a concise and easy to understand manner the basics and most recent findings in the field. Based on over 300 color figures and the model of plate tectonics, the book offers insight into the generation of magmas and the occurrence and origin of volcanoes. The analysis and description of volcanic structures is followed by process oriented chapters discussing the role of magmatic gases as well as explosive mechanisms and sedimentation of volcanic material. The final chapters deal with the forecast of eruptions and their influence on climate. Students and scientists of a broad range of fields will use this book as an interesting and attractive source of information. Laypeople will find it a highly accessible and graphically beautiful way to acquire a state-of-the-art foundation in this fascinating field. "Volcanism by Hans-Ulrich Schmincke has photos of the best quality I have ever seen in a text on the subject... In addition, the schematic figures in their wide range of styles are clear, colorful, and simplified to emphasize the most important factors while including all significant features... "I have really enjoyed reading and rereading Schmincke’s book. It fills a great gap in texts available for teaching any basic course in volcanology. No other book I know of has the depth and breadth of Volcanism... I have shared Volcanism with my colleagues to their significant benefit, and I am more convinced of its value for a broad range of Earth and planetary scientists. Undoubtedly, I will use Volcanism for my upcoming courses in volcanology. I will never hesitate to recommend it to others. Many geoscientists from very different subdisciplines will benefit from adding the book to their personal libraries. Schmincke has done us all a great service by undertaking the grueling task of writing the book – and it is much better that he alone wrote it." Stanley N. Williams, ASU Tempe, AZ (Physics Today, April 2005) "Schmincke is a German volcanologist with an international reputation, and he has done us all a great favour because he sensibly channelled his fascination with volcanoes into writing this beautifully illustrated book... [he] tackles the entire geological setting of volcanoes within the earth and the processes that form them... And, with more than 400 colour illustrations, including a huge number of really excellent new diagrams, cutaway models and maps, plus a rich glossary and references, this book is accessible to anyone with an interest in the subject." New Scientist (March 2004) "The science of volcanology has made tremendous progress over the past 40 years, primarily because of technological advances and because each tragic eruption has led researchers to recognize the processes behind such serious hazards. Yet scientists are still learning a great deal because of photographs that either capture those processes in action or show us the critical factors left behind in the rock record.Volcanism by Hans-Ulrich Schmincke has photos of the best quality I have ever seen in a text on the subject. I found myself wishing that I had had the photo of Nicaragua’s Masaya volcano, which was the subject of my dissertation, but it was Schmincke who was able to include it in his book. In addition, the schematic figures in their wide range of styles are clear, colorful, and simplified to emphasize the most important factors while including all significant features. The book’s paper is of such high quality that at times I felt I had turned two pages rather than one. I have really enjoyed reading and rereading Schmincke’s book. It fills a great gap in texts available for teaching any basic course in volcanology. No other book I know of has the depth and breadth of Volcanism. I was disappointed that the text did not arrive on my desk until last August, when it was too late for me to choose it for my course in volcanology. I am also disappointed about another fact—the book’s binding is already becoming tattered because of my intense use of it! Schmincke is a volcanologist who, in 1967, first published papers on sedimentary rocks of volcanic origin, the direction traveled by lava flows millions of years ago, and the structures preserved in explosive ignimbrites, or pumice-flow deposits, that reveal important details of their formation. Since then, his studies in Germany’s Laacher See, the Canary Islands, the Troodos Ophiolite of Cyprus, and many other regions have forged great fundamental advances. Such contributions have been recognized with his receipt of several international awards and clearly give him a strong base for writing the book. However, as a scientist who has focused on the challenges of monitoring the very diverse activities of volcanoes, I think that the text’s overriding emphasis on the rock record has its cost. The group of scientists who are struggling with their goals to reduce or mitigate the hazards of the eruptions of tomorrow need to learn more about the options of technology, instrumentation, and methodology that are currently available. More than 500 million people live near the more than 1500 known active volcanoes and are constantly facing serious threats of eruptions. An extremely energetic earthquake caused the horrific tsunamis of 2004. However, the tsunamis of 1792, 1815, and 1883, which were caused by the eruptions of Japan’s Unzen volcano and Indonesia’s Tambora and Krakatau volcanoes, each took a similar toll. " ( Stanley N. Williams, PHYSICS TODAY, April 2005)
Publisher: Springer Science & Business Media
ISBN: 9783540436508
Category : Science
Languages : en
Pages : 342
Book Description
Volcanic eruptions are the clear and dramatic expression of dynamic processes in planet Earth. The author, one of the most profound specialists in the field of volcanology, explains in a concise and easy to understand manner the basics and most recent findings in the field. Based on over 300 color figures and the model of plate tectonics, the book offers insight into the generation of magmas and the occurrence and origin of volcanoes. The analysis and description of volcanic structures is followed by process oriented chapters discussing the role of magmatic gases as well as explosive mechanisms and sedimentation of volcanic material. The final chapters deal with the forecast of eruptions and their influence on climate. Students and scientists of a broad range of fields will use this book as an interesting and attractive source of information. Laypeople will find it a highly accessible and graphically beautiful way to acquire a state-of-the-art foundation in this fascinating field. "Volcanism by Hans-Ulrich Schmincke has photos of the best quality I have ever seen in a text on the subject... In addition, the schematic figures in their wide range of styles are clear, colorful, and simplified to emphasize the most important factors while including all significant features... "I have really enjoyed reading and rereading Schmincke’s book. It fills a great gap in texts available for teaching any basic course in volcanology. No other book I know of has the depth and breadth of Volcanism... I have shared Volcanism with my colleagues to their significant benefit, and I am more convinced of its value for a broad range of Earth and planetary scientists. Undoubtedly, I will use Volcanism for my upcoming courses in volcanology. I will never hesitate to recommend it to others. Many geoscientists from very different subdisciplines will benefit from adding the book to their personal libraries. Schmincke has done us all a great service by undertaking the grueling task of writing the book – and it is much better that he alone wrote it." Stanley N. Williams, ASU Tempe, AZ (Physics Today, April 2005) "Schmincke is a German volcanologist with an international reputation, and he has done us all a great favour because he sensibly channelled his fascination with volcanoes into writing this beautifully illustrated book... [he] tackles the entire geological setting of volcanoes within the earth and the processes that form them... And, with more than 400 colour illustrations, including a huge number of really excellent new diagrams, cutaway models and maps, plus a rich glossary and references, this book is accessible to anyone with an interest in the subject." New Scientist (March 2004) "The science of volcanology has made tremendous progress over the past 40 years, primarily because of technological advances and because each tragic eruption has led researchers to recognize the processes behind such serious hazards. Yet scientists are still learning a great deal because of photographs that either capture those processes in action or show us the critical factors left behind in the rock record.Volcanism by Hans-Ulrich Schmincke has photos of the best quality I have ever seen in a text on the subject. I found myself wishing that I had had the photo of Nicaragua’s Masaya volcano, which was the subject of my dissertation, but it was Schmincke who was able to include it in his book. In addition, the schematic figures in their wide range of styles are clear, colorful, and simplified to emphasize the most important factors while including all significant features. The book’s paper is of such high quality that at times I felt I had turned two pages rather than one. I have really enjoyed reading and rereading Schmincke’s book. It fills a great gap in texts available for teaching any basic course in volcanology. No other book I know of has the depth and breadth of Volcanism. I was disappointed that the text did not arrive on my desk until last August, when it was too late for me to choose it for my course in volcanology. I am also disappointed about another fact—the book’s binding is already becoming tattered because of my intense use of it! Schmincke is a volcanologist who, in 1967, first published papers on sedimentary rocks of volcanic origin, the direction traveled by lava flows millions of years ago, and the structures preserved in explosive ignimbrites, or pumice-flow deposits, that reveal important details of their formation. Since then, his studies in Germany’s Laacher See, the Canary Islands, the Troodos Ophiolite of Cyprus, and many other regions have forged great fundamental advances. Such contributions have been recognized with his receipt of several international awards and clearly give him a strong base for writing the book. However, as a scientist who has focused on the challenges of monitoring the very diverse activities of volcanoes, I think that the text’s overriding emphasis on the rock record has its cost. The group of scientists who are struggling with their goals to reduce or mitigate the hazards of the eruptions of tomorrow need to learn more about the options of technology, instrumentation, and methodology that are currently available. More than 500 million people live near the more than 1500 known active volcanoes and are constantly facing serious threats of eruptions. An extremely energetic earthquake caused the horrific tsunamis of 2004. However, the tsunamis of 1792, 1815, and 1883, which were caused by the eruptions of Japan’s Unzen volcano and Indonesia’s Tambora and Krakatau volcanoes, each took a similar toll. " ( Stanley N. Williams, PHYSICS TODAY, April 2005)
Fundamentals of Physical Geology
Author: Sreepat Jain
Publisher: Springer Science & Business Media
ISBN: 8132215397
Category : Science
Languages : en
Pages : 494
Book Description
Physical Geology is a vast subject and it is not possible to cover all aspects in one book. This book does not invent the wheel but merely put together sets of updated but concise material on Physical Geology with lots of illustrations. All illustrations are created by hand and give a real classroom feel to the book. Students or readers can easily reproduce them by hand. This is a book, where a diagram says it all. The book is divided into four parts. The first part “The Solar System and Cosmic Bodies” deals with elements of our Solar System and the cosmic bodies around it (like meteorites, asteroids, etc.). The second part “The Earth Materials” deals with Earth and its internal structure. The third part “The Hydrologic System” is more exhaustive and deals with the hydrological system of the Earth including Weathering and Mass Wasting, Streams, Groundwater, Karst, Glaciers, Oceans and Aeolian Processes and Landforms. The fourth and the final part “The Tectonic System” deals with different aspects of Plate Tectonics, Earthquakes and Volcanoes.
Publisher: Springer Science & Business Media
ISBN: 8132215397
Category : Science
Languages : en
Pages : 494
Book Description
Physical Geology is a vast subject and it is not possible to cover all aspects in one book. This book does not invent the wheel but merely put together sets of updated but concise material on Physical Geology with lots of illustrations. All illustrations are created by hand and give a real classroom feel to the book. Students or readers can easily reproduce them by hand. This is a book, where a diagram says it all. The book is divided into four parts. The first part “The Solar System and Cosmic Bodies” deals with elements of our Solar System and the cosmic bodies around it (like meteorites, asteroids, etc.). The second part “The Earth Materials” deals with Earth and its internal structure. The third part “The Hydrologic System” is more exhaustive and deals with the hydrological system of the Earth including Weathering and Mass Wasting, Streams, Groundwater, Karst, Glaciers, Oceans and Aeolian Processes and Landforms. The fourth and the final part “The Tectonic System” deals with different aspects of Plate Tectonics, Earthquakes and Volcanoes.
Modeling Volcanic Processes
Author: Sarah A. Fagents
Publisher: Cambridge University Press
ISBN: 1139619225
Category : Science
Languages : en
Pages : 902
Book Description
Understanding the physical behavior of volcanoes is key to mitigating the hazards active volcanoes pose to the ever-increasing populations living nearby. The processes involved in volcanic eruptions are driven by a series of interlinked physical phenomena, and to fully understand these, volcanologists must employ various physics subdisciplines. This book provides the first advanced-level, one-stop resource examining the physics of volcanic behavior and reviewing the state-of-the-art in modeling volcanic processes. Each chapter begins by explaining simple modeling formulations and progresses to present cutting-edge research illustrated by case studies. Individual chapters cover subsurface magmatic processes through to eruption in various environments and conclude with the application of modeling to understanding the other volcanic planets of our Solar System. Providing an accessible and practical text for graduate students of physical volcanology, this book is also an important resource for researchers and professionals in the fields of volcanology, geophysics, geochemistry, petrology and natural hazards.
Publisher: Cambridge University Press
ISBN: 1139619225
Category : Science
Languages : en
Pages : 902
Book Description
Understanding the physical behavior of volcanoes is key to mitigating the hazards active volcanoes pose to the ever-increasing populations living nearby. The processes involved in volcanic eruptions are driven by a series of interlinked physical phenomena, and to fully understand these, volcanologists must employ various physics subdisciplines. This book provides the first advanced-level, one-stop resource examining the physics of volcanic behavior and reviewing the state-of-the-art in modeling volcanic processes. Each chapter begins by explaining simple modeling formulations and progresses to present cutting-edge research illustrated by case studies. Individual chapters cover subsurface magmatic processes through to eruption in various environments and conclude with the application of modeling to understanding the other volcanic planets of our Solar System. Providing an accessible and practical text for graduate students of physical volcanology, this book is also an important resource for researchers and professionals in the fields of volcanology, geophysics, geochemistry, petrology and natural hazards.
Fundamentals of Physical Volcanology
Author: Elisabeth Parfitt
Publisher: Wiley
ISBN: 9781119266419
Category : Science
Languages : en
Pages : 0
Book Description
The world's leading student text on physical volcanology offers an unmatched introduction to the field In the newly revised second edition of Fundamentals of Physical Volcanology, the authors provide a comprehensive introduction to the processes that control when and how volcanoes erupt. The book addresses all aspects of modern volcanology, from petrology and geochemistry to rock physics, fluid dynamics and thermodynamics. With the help of new and improved illustrations, this new edition explains eruption types and mechanisms, subsurface processes, volcanic eruption products, and how volcanoes affect their surrounding environment. Readers will also find: Quantitative treatment of physical volcanological processes A review of the historical development of volcanology Examples of current research trends and topics in volcanology Perfect for undergraduate earth sciences students around the globe, Fundamentals of Physical Volcanology will also earn a place in the libraries of researchers in related fields seeking an accessible introduction to the principles of physical volcanology.
Publisher: Wiley
ISBN: 9781119266419
Category : Science
Languages : en
Pages : 0
Book Description
The world's leading student text on physical volcanology offers an unmatched introduction to the field In the newly revised second edition of Fundamentals of Physical Volcanology, the authors provide a comprehensive introduction to the processes that control when and how volcanoes erupt. The book addresses all aspects of modern volcanology, from petrology and geochemistry to rock physics, fluid dynamics and thermodynamics. With the help of new and improved illustrations, this new edition explains eruption types and mechanisms, subsurface processes, volcanic eruption products, and how volcanoes affect their surrounding environment. Readers will also find: Quantitative treatment of physical volcanological processes A review of the historical development of volcanology Examples of current research trends and topics in volcanology Perfect for undergraduate earth sciences students around the globe, Fundamentals of Physical Volcanology will also earn a place in the libraries of researchers in related fields seeking an accessible introduction to the principles of physical volcanology.
Introduction to Volcanic Seismology
Author: Vyacheslav M Zobin
Publisher: Elsevier
ISBN: 0444563768
Category : Science
Languages : en
Pages : 501
Book Description
Volcanic seismology represents the main, and often the only, tool to forecast volcanic eruptions and to monitor the eruption process. This book describes the main types of seismic signals at volcanoes, their nature and spatial and temporal distributions at different stages of eruptive activity. Following from the success of the first edition, published in 2003, the second edition consists of 19 chapters including significant revision and five new chapters. Organized into four sections, the book begins with an introduction to the history and topic of volcanic seismology, discussing the theoretical and experimental models that were developed for the study of the origin of volcanic earthquakes. The second section is devoted to the study of volcano-tectonic earthquakes, giving the theoretical basis for their occurrence and swarms as well as case stories of volcano-tectonic activity associated with the eruptions at basaltic, andesitic, and dacitic volcanoes. There were 40 cases of volcanic eruptions at 20 volcanoes that occurred all over the world from 1910 to 2005, which are discussed. General regularities of volcano-tectonic earthquake swarms, their participation in the eruptive process, their source properties, and the hazard of strong volcano-tectonic earthquakes are also described. The third section describes the theoretical basis for the occurrence of eruption earthquakes together with the description of volcanic tremor, the seismic signals associated with pyroclastic flows, rockfalls and lahars, and volcanic explosions, long-period and very-long-period seismic signals at volcanoes, micro-earthquake swarms, and acoustic events. The final section discuss the mitigation of volcanic hazard and include the methodology of seismic monitoring of volcanic activity, the examples of forecasting of volcanic eruptions by seismic methods, and the description of seismic activity in the regions of dormant volcanoes. This book will be essential for students and practitioners of volcanic seismology to understand the essential elements of volcanic eruptions. - Provides a comprehensive overview of seismic signals at different stages of volcano eruption. - Discusses dozens of case histories from around the world to provide real-world applications. - Illustrations accompany detailed descriptions of volcano eruptions alongside the theories involved.
Publisher: Elsevier
ISBN: 0444563768
Category : Science
Languages : en
Pages : 501
Book Description
Volcanic seismology represents the main, and often the only, tool to forecast volcanic eruptions and to monitor the eruption process. This book describes the main types of seismic signals at volcanoes, their nature and spatial and temporal distributions at different stages of eruptive activity. Following from the success of the first edition, published in 2003, the second edition consists of 19 chapters including significant revision and five new chapters. Organized into four sections, the book begins with an introduction to the history and topic of volcanic seismology, discussing the theoretical and experimental models that were developed for the study of the origin of volcanic earthquakes. The second section is devoted to the study of volcano-tectonic earthquakes, giving the theoretical basis for their occurrence and swarms as well as case stories of volcano-tectonic activity associated with the eruptions at basaltic, andesitic, and dacitic volcanoes. There were 40 cases of volcanic eruptions at 20 volcanoes that occurred all over the world from 1910 to 2005, which are discussed. General regularities of volcano-tectonic earthquake swarms, their participation in the eruptive process, their source properties, and the hazard of strong volcano-tectonic earthquakes are also described. The third section describes the theoretical basis for the occurrence of eruption earthquakes together with the description of volcanic tremor, the seismic signals associated with pyroclastic flows, rockfalls and lahars, and volcanic explosions, long-period and very-long-period seismic signals at volcanoes, micro-earthquake swarms, and acoustic events. The final section discuss the mitigation of volcanic hazard and include the methodology of seismic monitoring of volcanic activity, the examples of forecasting of volcanic eruptions by seismic methods, and the description of seismic activity in the regions of dormant volcanoes. This book will be essential for students and practitioners of volcanic seismology to understand the essential elements of volcanic eruptions. - Provides a comprehensive overview of seismic signals at different stages of volcano eruption. - Discusses dozens of case histories from around the world to provide real-world applications. - Illustrations accompany detailed descriptions of volcano eruptions alongside the theories involved.
Volcanology
Author: Ray Cas
Publisher: Springer
ISBN: 9783319666129
Category : Science
Languages : en
Pages : 0
Book Description
This book is a substantially updated, revised and extended version of the book Volcanic Successions, published by Cas and Wright back in 1987. Divided into six major parts, it offers comprehensive information on magma properties; fragmentation processes; subaerial and subaqueous lava types and field textures; sub-volcanic intrusions; explosive or pyroclastic eruptions and deposits; surface sedimentary processes; hydrothermal alteration and lithification, and effects on volcanic rock textures; terminology and approaches to describing and mapping volcanic rocks and terrains; geology of volcanoes and facies models; volcanism and tectonic setting; and to conclude, volcanic-hosted resources. It is a highly up-to-date text, presenting a coherent flow of topics, together with excellent visual material to illustrate key points and deposit features. The new authorship team consists of Ray Cas, Guido Giordano and John Wright, all of whom have extensive experience across the complete spectrum of volcanological processes and deposit types discussed in this exciting new book. The authors approach the diversity of products in volcanic terrains as facies, and use facies analysis and interpretation as a means of constructing facies models for different volcanic settings and their resources. The book is intended as a textbook and research reference book for senior undergraduate and graduate students, researchers and professionals alike.
Publisher: Springer
ISBN: 9783319666129
Category : Science
Languages : en
Pages : 0
Book Description
This book is a substantially updated, revised and extended version of the book Volcanic Successions, published by Cas and Wright back in 1987. Divided into six major parts, it offers comprehensive information on magma properties; fragmentation processes; subaerial and subaqueous lava types and field textures; sub-volcanic intrusions; explosive or pyroclastic eruptions and deposits; surface sedimentary processes; hydrothermal alteration and lithification, and effects on volcanic rock textures; terminology and approaches to describing and mapping volcanic rocks and terrains; geology of volcanoes and facies models; volcanism and tectonic setting; and to conclude, volcanic-hosted resources. It is a highly up-to-date text, presenting a coherent flow of topics, together with excellent visual material to illustrate key points and deposit features. The new authorship team consists of Ray Cas, Guido Giordano and John Wright, all of whom have extensive experience across the complete spectrum of volcanological processes and deposit types discussed in this exciting new book. The authors approach the diversity of products in volcanic terrains as facies, and use facies analysis and interpretation as a means of constructing facies models for different volcanic settings and their resources. The book is intended as a textbook and research reference book for senior undergraduate and graduate students, researchers and professionals alike.
Fundamentals of Physical Volcanology
Author:
Publisher:
ISBN: 9781642240184
Category :
Languages : en
Pages : 364
Book Description
Volcanoes can explode with so much force that they emit small particles up into the stratosphere. Their vicious power can cause the area around the volcano to become tumbledown, and even generate ocean waves so large they can go across entire oceans and demolish coastal areas thousands of miles away. Eruption columns can grow rapidly and reach more than 12 miles above a volcano in less than 30 minutes, forming an eruption cloud. The volcanic ash in the cloud can pose a serious hazard to aviation. During the past 15 years, about 80 commercial jets have been damaged by inadvertently flying into ash clouds, and several have nearly crashed because of engine failure. Large eruption clouds can extend hundreds of miles downwind, resulting in ash fall over enormous areas; the wind carries the smallest ash particles the farthest. Especially important for risk reduction, data from volcano monitoring constitute the only scientific basis for short-term forecasts (years to days) of a future eruption or of possible changes during an ongoing eruption. Hazards assessments, volcano monitoring, and effective communications among scientists, civil authorities, and the general public comprise the core elements of any successful program to reduce risk from volcano hazards. Many volcano- logical, geophysical, geochemical, and petrological techniques require real-time data gathering or observation during an eruption that may not have direct applicability to the hazard at hand. Therefore, promoting scientific inquiry should be a major part of any strategic plan for managing volcanic eruptions.Fundamentals of Physical Volcanology present a wide-ranging overview of the volcanoes, their products, their eruptive behavior, and their hazards. It aims to understand the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques with a focus on applied research relating to volcanism and particularly its societal impacts. It is packed with the methods for risk analysis; humanizing risk management; underneath community mitigation, awareness, response to and revival from volcanic hazard events; health concerns related to volcanism; social adaptation to volcanic hazards; policy and institutional aspects of disaster risk management; applications of physical volcanology.
Publisher:
ISBN: 9781642240184
Category :
Languages : en
Pages : 364
Book Description
Volcanoes can explode with so much force that they emit small particles up into the stratosphere. Their vicious power can cause the area around the volcano to become tumbledown, and even generate ocean waves so large they can go across entire oceans and demolish coastal areas thousands of miles away. Eruption columns can grow rapidly and reach more than 12 miles above a volcano in less than 30 minutes, forming an eruption cloud. The volcanic ash in the cloud can pose a serious hazard to aviation. During the past 15 years, about 80 commercial jets have been damaged by inadvertently flying into ash clouds, and several have nearly crashed because of engine failure. Large eruption clouds can extend hundreds of miles downwind, resulting in ash fall over enormous areas; the wind carries the smallest ash particles the farthest. Especially important for risk reduction, data from volcano monitoring constitute the only scientific basis for short-term forecasts (years to days) of a future eruption or of possible changes during an ongoing eruption. Hazards assessments, volcano monitoring, and effective communications among scientists, civil authorities, and the general public comprise the core elements of any successful program to reduce risk from volcano hazards. Many volcano- logical, geophysical, geochemical, and petrological techniques require real-time data gathering or observation during an eruption that may not have direct applicability to the hazard at hand. Therefore, promoting scientific inquiry should be a major part of any strategic plan for managing volcanic eruptions.Fundamentals of Physical Volcanology present a wide-ranging overview of the volcanoes, their products, their eruptive behavior, and their hazards. It aims to understand the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques with a focus on applied research relating to volcanism and particularly its societal impacts. It is packed with the methods for risk analysis; humanizing risk management; underneath community mitigation, awareness, response to and revival from volcanic hazard events; health concerns related to volcanism; social adaptation to volcanic hazards; policy and institutional aspects of disaster risk management; applications of physical volcanology.
Introducing Volcanology
Author: Dougal Jerram
Publisher: Dunedin Academic Press
ISBN: 9781906716226
Category : Volcanic ash, tuff, etc
Languages : en
Pages : 0
Book Description
Volcanic activity is an essential element of the forces that shape and continually reshape our planet. Volcanic eruptions are a regular reminder of the power of nature and our vulnerability to this raw geological phenomenon. What are volcanoes? How do volcanoes relate to plate tectonics and the movement of continents? Why do eruptions occur? Can we predict eruptions? How have volcanoes affected the earth's climate? What other volcanic activity is there? Copiously illustrated throughout, Introducing Volcanology is a concise and accessible introduction to the science of hot rocks. The book is for those with a curiosity - and for those contemplating a course of formal study - in the subject of volcanology. Technical terms are kept to a minimum and a glossary is provided, covering the whole realm, from ash to zeolites. The book also describes the most notable eruptions in world history. "...thorough and well done....clear and often innovative graphics." The Leading Edge (August 2012) [Subject: Volcanology, Geology, Natural Science]
Publisher: Dunedin Academic Press
ISBN: 9781906716226
Category : Volcanic ash, tuff, etc
Languages : en
Pages : 0
Book Description
Volcanic activity is an essential element of the forces that shape and continually reshape our planet. Volcanic eruptions are a regular reminder of the power of nature and our vulnerability to this raw geological phenomenon. What are volcanoes? How do volcanoes relate to plate tectonics and the movement of continents? Why do eruptions occur? Can we predict eruptions? How have volcanoes affected the earth's climate? What other volcanic activity is there? Copiously illustrated throughout, Introducing Volcanology is a concise and accessible introduction to the science of hot rocks. The book is for those with a curiosity - and for those contemplating a course of formal study - in the subject of volcanology. Technical terms are kept to a minimum and a glossary is provided, covering the whole realm, from ash to zeolites. The book also describes the most notable eruptions in world history. "...thorough and well done....clear and often innovative graphics." The Leading Edge (August 2012) [Subject: Volcanology, Geology, Natural Science]
What is a Volcano?
Author: Edgardo Canon-Tapia
Publisher: Geological Society of America
ISBN: 0813724708
Category : Science
Languages : en
Pages : 152
Book Description
Publisher: Geological Society of America
ISBN: 0813724708
Category : Science
Languages : en
Pages : 152
Book Description