Author: Massimiliano Pierobon
Publisher:
ISBN: 9781601988164
Category : Computers
Languages : en
Pages : 164
Book Description
Molecular communication (MC) is a promising bio-inspired paradigm for the exchange of information among nanotechnology-enabled devices. These devices, called nanomachines, are expected to have the ability to sense, compute and actuate, and interconnect into networks, called nanonetworks, to overcome their individual limitations and benefit from collaborative efforts. MC realizes the exchange of information through the transmission, propagation, and reception of molecules, and it is proposed as a feasible solution for nanonetworks. This idea is motivated by the observation of nature, where MC is successfully adopted by cells for intracellular and intercellular communication. MC-based nanonetworks have the potential to be the enabling technology for a wide range of applications, mostly in the biomedical, but also in the industrial and surveillance fields. The focus of this Ph. D. thesis is on the most fundamental type of MC, i.e., diffusion-based MC, where the propagation of information-bearing molecules between a transmitter and a receiver is realized through free diffusion in a fluid. The objectives of the research presented in this thesis are to analyze the MC paradigm from the point of view of communication engineering and information theory, and to provide solutions to the modeling and design of MC-based nanonetworks. First, a physical end-to-end model is realized to study each component in a basic diffusion-based MC system design, as well as the overall system, in terms of gain and delay. Second, the noise sources affecting a diffusion-based MC are identified and statistically modeled. Third, upper/lower bounds to the capacity are derived to evaluate the information-theoretic performance of diffusion-based MC. Fourth, a stochastic analysis of the interference when multiple transmitters access the diffusion-based MC channel is provided. Fifth, as a proof of concept, a design of a diffusion-based MC system built upon genetically-engineered biological circuits is analyzed. This research provides fundamental results that establish a basis for the modeling, design, and realization of future MC-based nanonetworks, as novel technologies and tools are being developed.
Fundamentals of Diffusion-Based Molecular Communication in Nanonetworks
Author: Massimiliano Pierobon
Publisher:
ISBN: 9781601988164
Category : Computers
Languages : en
Pages : 164
Book Description
Molecular communication (MC) is a promising bio-inspired paradigm for the exchange of information among nanotechnology-enabled devices. These devices, called nanomachines, are expected to have the ability to sense, compute and actuate, and interconnect into networks, called nanonetworks, to overcome their individual limitations and benefit from collaborative efforts. MC realizes the exchange of information through the transmission, propagation, and reception of molecules, and it is proposed as a feasible solution for nanonetworks. This idea is motivated by the observation of nature, where MC is successfully adopted by cells for intracellular and intercellular communication. MC-based nanonetworks have the potential to be the enabling technology for a wide range of applications, mostly in the biomedical, but also in the industrial and surveillance fields. The focus of this Ph. D. thesis is on the most fundamental type of MC, i.e., diffusion-based MC, where the propagation of information-bearing molecules between a transmitter and a receiver is realized through free diffusion in a fluid. The objectives of the research presented in this thesis are to analyze the MC paradigm from the point of view of communication engineering and information theory, and to provide solutions to the modeling and design of MC-based nanonetworks. First, a physical end-to-end model is realized to study each component in a basic diffusion-based MC system design, as well as the overall system, in terms of gain and delay. Second, the noise sources affecting a diffusion-based MC are identified and statistically modeled. Third, upper/lower bounds to the capacity are derived to evaluate the information-theoretic performance of diffusion-based MC. Fourth, a stochastic analysis of the interference when multiple transmitters access the diffusion-based MC channel is provided. Fifth, as a proof of concept, a design of a diffusion-based MC system built upon genetically-engineered biological circuits is analyzed. This research provides fundamental results that establish a basis for the modeling, design, and realization of future MC-based nanonetworks, as novel technologies and tools are being developed.
Publisher:
ISBN: 9781601988164
Category : Computers
Languages : en
Pages : 164
Book Description
Molecular communication (MC) is a promising bio-inspired paradigm for the exchange of information among nanotechnology-enabled devices. These devices, called nanomachines, are expected to have the ability to sense, compute and actuate, and interconnect into networks, called nanonetworks, to overcome their individual limitations and benefit from collaborative efforts. MC realizes the exchange of information through the transmission, propagation, and reception of molecules, and it is proposed as a feasible solution for nanonetworks. This idea is motivated by the observation of nature, where MC is successfully adopted by cells for intracellular and intercellular communication. MC-based nanonetworks have the potential to be the enabling technology for a wide range of applications, mostly in the biomedical, but also in the industrial and surveillance fields. The focus of this Ph. D. thesis is on the most fundamental type of MC, i.e., diffusion-based MC, where the propagation of information-bearing molecules between a transmitter and a receiver is realized through free diffusion in a fluid. The objectives of the research presented in this thesis are to analyze the MC paradigm from the point of view of communication engineering and information theory, and to provide solutions to the modeling and design of MC-based nanonetworks. First, a physical end-to-end model is realized to study each component in a basic diffusion-based MC system design, as well as the overall system, in terms of gain and delay. Second, the noise sources affecting a diffusion-based MC are identified and statistically modeled. Third, upper/lower bounds to the capacity are derived to evaluate the information-theoretic performance of diffusion-based MC. Fourth, a stochastic analysis of the interference when multiple transmitters access the diffusion-based MC channel is provided. Fifth, as a proof of concept, a design of a diffusion-based MC system built upon genetically-engineered biological circuits is analyzed. This research provides fundamental results that establish a basis for the modeling, design, and realization of future MC-based nanonetworks, as novel technologies and tools are being developed.
Fundamentals of Diffusion-based Molecular Communication in Nanonetworks
Author: Massimiliano Pierobon
Publisher:
ISBN: 9781601988171
Category : Molecular communication (Telecommunication)
Languages : en
Pages : 147
Book Description
Molecular communication (MC) is a promising bio-inspired paradigm for the interconnection of autonomous nanotechnology-enabled devices, or nanomachines, into nanonetworks. MC realizes the exchange of information through the transmission, propagation, and reception of molecules, and it is proposed as a feasible solution for nanonetworks. This idea is motivated by the observation of nature, where MC is successfully adopted by cells for intracellular and intercellular communication. MC-based nanonetworks have the potential to be the enabling technology for a wide range of applications, mostly in the biomedical, but also in the industrial and surveillance fields. The focus of this article is on the most fundamental type of MC, i.e., diffusion-based MC, where the propagation of information-bearing molecules between a transmitter and a receiver is realized through free diffusion in a fluid. The objectives of the research presented in this article are to analyze an MC link from the point of view of communication engineering and information theory, and to provide solutions to the modeling and design of MC-based nanonetworks. First, a deterministic model is realized to study each component, as well as the overall diffusion-based- MC link, in terms of gain and delay. Second, the noise sources affecting a diffusion-based-MC link are identified and statistically modeled. Third, upper/lower bounds to the capacity are derived to evaluate the information-theoretic performance of diffusion-based MC. Fourth, an analysis of the interference produced by multiple diffusion-based MC links in a nanonetwork is provided. This research provides fundamental results that establish a basis for the modeling, design, and realization of future MC-based nanonetworks, as novel technologies and tools are being developed.
Publisher:
ISBN: 9781601988171
Category : Molecular communication (Telecommunication)
Languages : en
Pages : 147
Book Description
Molecular communication (MC) is a promising bio-inspired paradigm for the interconnection of autonomous nanotechnology-enabled devices, or nanomachines, into nanonetworks. MC realizes the exchange of information through the transmission, propagation, and reception of molecules, and it is proposed as a feasible solution for nanonetworks. This idea is motivated by the observation of nature, where MC is successfully adopted by cells for intracellular and intercellular communication. MC-based nanonetworks have the potential to be the enabling technology for a wide range of applications, mostly in the biomedical, but also in the industrial and surveillance fields. The focus of this article is on the most fundamental type of MC, i.e., diffusion-based MC, where the propagation of information-bearing molecules between a transmitter and a receiver is realized through free diffusion in a fluid. The objectives of the research presented in this article are to analyze an MC link from the point of view of communication engineering and information theory, and to provide solutions to the modeling and design of MC-based nanonetworks. First, a deterministic model is realized to study each component, as well as the overall diffusion-based- MC link, in terms of gain and delay. Second, the noise sources affecting a diffusion-based-MC link are identified and statistically modeled. Third, upper/lower bounds to the capacity are derived to evaluate the information-theoretic performance of diffusion-based MC. Fourth, an analysis of the interference produced by multiple diffusion-based MC links in a nanonetwork is provided. This research provides fundamental results that establish a basis for the modeling, design, and realization of future MC-based nanonetworks, as novel technologies and tools are being developed.
Molecular Communication
Author: Tadashi Nakano
Publisher: Cambridge University Press
ISBN: 1107292387
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
This comprehensive guide, by pioneers in the field, brings together, for the first time, everything a new researcher, graduate student or industry practitioner needs to get started in molecular communication. Written with accessibility in mind, it requires little background knowledge, and provides a detailed introduction to the relevant aspects of biology and information theory, as well as coverage of practical systems. The authors start by describing biological nanomachines, the basics of biological molecular communication and the microorganisms that use it. They then proceed to engineered molecular communication and the molecular communication paradigm, with mathematical models of various types of molecular communication and a description of the information and communication theory of molecular communication. Finally, the practical aspects of designing molecular communication systems are presented, including a review of the key applications. Ideal for engineers and biologists looking to get up to speed on the current practice in this growing field.
Publisher: Cambridge University Press
ISBN: 1107292387
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
This comprehensive guide, by pioneers in the field, brings together, for the first time, everything a new researcher, graduate student or industry practitioner needs to get started in molecular communication. Written with accessibility in mind, it requires little background knowledge, and provides a detailed introduction to the relevant aspects of biology and information theory, as well as coverage of practical systems. The authors start by describing biological nanomachines, the basics of biological molecular communication and the microorganisms that use it. They then proceed to engineered molecular communication and the molecular communication paradigm, with mathematical models of various types of molecular communication and a description of the information and communication theory of molecular communication. Finally, the practical aspects of designing molecular communication systems are presented, including a review of the key applications. Ideal for engineers and biologists looking to get up to speed on the current practice in this growing field.
Nanoscale Networking and Communications Handbook
Author: John R. Vacca
Publisher: CRC Press
ISBN: 0429531079
Category : Computers
Languages : en
Pages : 431
Book Description
This comprehensive handbook serves as a professional reference as well as a practitioner's guide to today's most complete and concise view of nanoscale networking and communications. It offers in-depth coverage of theory, technology, and practice as they relate to established technologies and recent advancements. It explores practical solutions to a wide range of nanoscale networking and communications issues. Individual chapters, authored by leading experts in the field, address the immediate and long-term challenges in the authors' respective areas of expertise.
Publisher: CRC Press
ISBN: 0429531079
Category : Computers
Languages : en
Pages : 431
Book Description
This comprehensive handbook serves as a professional reference as well as a practitioner's guide to today's most complete and concise view of nanoscale networking and communications. It offers in-depth coverage of theory, technology, and practice as they relate to established technologies and recent advancements. It explores practical solutions to a wide range of nanoscale networking and communications issues. Individual chapters, authored by leading experts in the field, address the immediate and long-term challenges in the authors' respective areas of expertise.
Molecular Communications and Nanonetworks
Author: Barış Atakan
Publisher: Springer Science & Business Media
ISBN: 1493907395
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
This book will introduce the concept of molecular communications and nanonetworks. The publication addresses why nanoscale communication is needed for the sophisticated nano and biotechnology applications. The text introduces the frontier applications of the molecular communication and nanonetworks. The book examines the molecular communication types called active, passive, and gap junction molecular communications. The author presents the molecular transmitter, receiver, encoding and decoding mechanisms used in these systems. Discussing the molecular communication system model and looking at the unique characteristics of practical molecular communication systems and these chemical reactions and their effects on the communication performance. Finally, the book examines the point-to-point, broadcast, and multiple-access molecular channel and shows two promising application examples of the nanonetworks. The first application example is the body area nanonetworks used in nanomedicine. the second nanonetwork application example, i.e., NanoSensor Networks (NSNs) with Molecular Communication.
Publisher: Springer Science & Business Media
ISBN: 1493907395
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
This book will introduce the concept of molecular communications and nanonetworks. The publication addresses why nanoscale communication is needed for the sophisticated nano and biotechnology applications. The text introduces the frontier applications of the molecular communication and nanonetworks. The book examines the molecular communication types called active, passive, and gap junction molecular communications. The author presents the molecular transmitter, receiver, encoding and decoding mechanisms used in these systems. Discussing the molecular communication system model and looking at the unique characteristics of practical molecular communication systems and these chemical reactions and their effects on the communication performance. Finally, the book examines the point-to-point, broadcast, and multiple-access molecular channel and shows two promising application examples of the nanonetworks. The first application example is the body area nanonetworks used in nanomedicine. the second nanonetwork application example, i.e., NanoSensor Networks (NSNs) with Molecular Communication.
Mathematical Foundations of Information Theory
Author: Aleksandr I?Akovlevich Khinchin
Publisher: Courier Corporation
ISBN: 0486604349
Category : Mathematics
Languages : en
Pages : 130
Book Description
First comprehensive introduction to information theory explores the work of Shannon, McMillan, Feinstein, and Khinchin. Topics include the entropy concept in probability theory, fundamental theorems, and other subjects. 1957 edition.
Publisher: Courier Corporation
ISBN: 0486604349
Category : Mathematics
Languages : en
Pages : 130
Book Description
First comprehensive introduction to information theory explores the work of Shannon, McMillan, Feinstein, and Khinchin. Topics include the entropy concept in probability theory, fundamental theorems, and other subjects. 1957 edition.
Reaction-Transport Systems
Author: Vicenc Mendez
Publisher: Springer Science & Business Media
ISBN: 3642114431
Category : Science
Languages : en
Pages : 468
Book Description
This book is an introduction to the dynamics of reaction-diffusion systems, with a focus on fronts and stationary spatial patterns. Emphasis is on systems that are non-standard in the sense that either the transport is not simply classical diffusion (Brownian motion) or the system is not homogeneous. A important feature is the derivation of the basic phenomenological equations from the mesoscopic system properties. Topics addressed include transport with inertia, described by persistent random walks and hyperbolic reaction-transport equations and transport by anomalous diffusion, in particular subdiffusion, where the mean square displacement grows sublinearly with time. In particular reaction-diffusion systems are studied where the medium is in turn either spatially inhomogeneous, compositionally heterogeneous or spatially discrete. Applications span a vast range of interdisciplinary fields and the systems considered can be as different as human or animal groups migrating under external influences, population ecology and evolution, complex chemical reactions, or networks of biological cells. Several chapters treat these applications in detail.
Publisher: Springer Science & Business Media
ISBN: 3642114431
Category : Science
Languages : en
Pages : 468
Book Description
This book is an introduction to the dynamics of reaction-diffusion systems, with a focus on fronts and stationary spatial patterns. Emphasis is on systems that are non-standard in the sense that either the transport is not simply classical diffusion (Brownian motion) or the system is not homogeneous. A important feature is the derivation of the basic phenomenological equations from the mesoscopic system properties. Topics addressed include transport with inertia, described by persistent random walks and hyperbolic reaction-transport equations and transport by anomalous diffusion, in particular subdiffusion, where the mean square displacement grows sublinearly with time. In particular reaction-diffusion systems are studied where the medium is in turn either spatially inhomogeneous, compositionally heterogeneous or spatially discrete. Applications span a vast range of interdisciplinary fields and the systems considered can be as different as human or animal groups migrating under external influences, population ecology and evolution, complex chemical reactions, or networks of biological cells. Several chapters treat these applications in detail.
Advanced Targeted Nanomedicine
Author: Uche Chude-Okonkwo
Publisher: Springer
ISBN: 3030110036
Category : Technology & Engineering
Languages : en
Pages : 150
Book Description
This book presents medical challenges as communication engineering problems. It offers the reader the interesting perspective of exploring and understanding disease pathology from the point of view of communication engineers. Therefore, diseases and their treatments can be addressed using conventional communication paradigms, approaches, tools and devices; thereby ushering in the interdisciplinary research platform termed advanced targeted nanomedicine. The rudimentary framework for advanced targeted nanomedicine is presented and expatiated across the seven chapters of this book.
Publisher: Springer
ISBN: 3030110036
Category : Technology & Engineering
Languages : en
Pages : 150
Book Description
This book presents medical challenges as communication engineering problems. It offers the reader the interesting perspective of exploring and understanding disease pathology from the point of view of communication engineers. Therefore, diseases and their treatments can be addressed using conventional communication paradigms, approaches, tools and devices; thereby ushering in the interdisciplinary research platform termed advanced targeted nanomedicine. The rudimentary framework for advanced targeted nanomedicine is presented and expatiated across the seven chapters of this book.
Modeling, Methodologies and Tools for Molecular and Nano-scale Communications
Author: Junichi Suzuki
Publisher: Springer
ISBN: 3319506889
Category : Technology & Engineering
Languages : en
Pages : 584
Book Description
This book reports on cutting-edge modeling techniques, methodologies and tools used to understand, design and engineer nanoscale communication systems, such as molecular communication systems. Moreover, it includes introductory materials for those who are new to the field. The book’s interdisciplinary approach, which merges perspectives in computer science, the biological sciences and nanotechnology, will appeal to graduate students and researchers in these three areas.The book is organized into five parts, the first of which describes the fundamentals of molecular communication, including basic concepts, models and designs. In turn, the second part examines specific types of molecular communication found in biological systems, such as neuronal communication in the brain. The book continues by exploring further types of nanoscale communication, such as fluorescence resonance energy transfer and electromagnetic-based nanoscale communication, in the third part, and by describing nanomaterials and structures for practical applications in the fourth. Lastly, the book presents nanomedical applications such as targeted drug delivery and biomolecular sensing.
Publisher: Springer
ISBN: 3319506889
Category : Technology & Engineering
Languages : en
Pages : 584
Book Description
This book reports on cutting-edge modeling techniques, methodologies and tools used to understand, design and engineer nanoscale communication systems, such as molecular communication systems. Moreover, it includes introductory materials for those who are new to the field. The book’s interdisciplinary approach, which merges perspectives in computer science, the biological sciences and nanotechnology, will appeal to graduate students and researchers in these three areas.The book is organized into five parts, the first of which describes the fundamentals of molecular communication, including basic concepts, models and designs. In turn, the second part examines specific types of molecular communication found in biological systems, such as neuronal communication in the brain. The book continues by exploring further types of nanoscale communication, such as fluorescence resonance energy transfer and electromagnetic-based nanoscale communication, in the third part, and by describing nanomaterials and structures for practical applications in the fourth. Lastly, the book presents nanomedical applications such as targeted drug delivery and biomolecular sensing.
Molecular Communications
Author: Yesenia Cevallos
Publisher: Springer Nature
ISBN: 3031368827
Category : Technology & Engineering
Languages : en
Pages : 209
Book Description
This book provides a complete analysis of molecular communications systems from the paradigm of TCP/IP network stack, and it exploits network theories (e.g. independent functions of a layer into a stack, addressing, flow control, error control, and traffic control) and applies them to biological systems. The authors show how these models can be applied in different areas such as industry, medicine, engineering, biochemistry, biotechnology, computer sciences, and other disciplines. The authors then explain how it is possible to obtain enormous benefits from these practices when applied in medicine, such as enhancing current treatment of diseases and reducing the side effects of drugs and improving the quality of treatment for patients. The authors show how molecular communications systems, in contrast to existing telecommunication paradigms, use molecules as information carriers. They show how sender biological nanomachines (bio-nano machines) encode data on molecules (signal molecules) and release the molecules into the environment. They go on to explain how the molecules then travel through the environment to reach the receiver bio-nano machines, where they biochemically react with the molecules to decipher information. This book is relevant to those studying telecommunications and biomedical students, engineers, masters, PhDs, and researchers.
Publisher: Springer Nature
ISBN: 3031368827
Category : Technology & Engineering
Languages : en
Pages : 209
Book Description
This book provides a complete analysis of molecular communications systems from the paradigm of TCP/IP network stack, and it exploits network theories (e.g. independent functions of a layer into a stack, addressing, flow control, error control, and traffic control) and applies them to biological systems. The authors show how these models can be applied in different areas such as industry, medicine, engineering, biochemistry, biotechnology, computer sciences, and other disciplines. The authors then explain how it is possible to obtain enormous benefits from these practices when applied in medicine, such as enhancing current treatment of diseases and reducing the side effects of drugs and improving the quality of treatment for patients. The authors show how molecular communications systems, in contrast to existing telecommunication paradigms, use molecules as information carriers. They show how sender biological nanomachines (bio-nano machines) encode data on molecules (signal molecules) and release the molecules into the environment. They go on to explain how the molecules then travel through the environment to reach the receiver bio-nano machines, where they biochemically react with the molecules to decipher information. This book is relevant to those studying telecommunications and biomedical students, engineers, masters, PhDs, and researchers.