Author: Jean-Baptiste Hiriart-Urruty
Publisher: Springer Science & Business Media
ISBN: 3642564682
Category : Mathematics
Languages : en
Pages : 268
Book Description
This book is an abridged version of the two volumes "Convex Analysis and Minimization Algorithms I and II" (Grundlehren der mathematischen Wissenschaften Vol. 305 and 306). It presents an introduction to the basic concepts in convex analysis and a study of convex minimization problems (with an emphasis on numerical algorithms). The "backbone" of bot volumes was extracted, some material deleted which was deemed too advanced for an introduction, or too closely attached to numerical algorithms. Some exercises were included and finally the index has been considerably enriched, making it an excellent choice for the purpose of learning and teaching.
Fundamentals of Convex Analysis
Author: Jean-Baptiste Hiriart-Urruty
Publisher: Springer Science & Business Media
ISBN: 3642564682
Category : Mathematics
Languages : en
Pages : 268
Book Description
This book is an abridged version of the two volumes "Convex Analysis and Minimization Algorithms I and II" (Grundlehren der mathematischen Wissenschaften Vol. 305 and 306). It presents an introduction to the basic concepts in convex analysis and a study of convex minimization problems (with an emphasis on numerical algorithms). The "backbone" of bot volumes was extracted, some material deleted which was deemed too advanced for an introduction, or too closely attached to numerical algorithms. Some exercises were included and finally the index has been considerably enriched, making it an excellent choice for the purpose of learning and teaching.
Publisher: Springer Science & Business Media
ISBN: 3642564682
Category : Mathematics
Languages : en
Pages : 268
Book Description
This book is an abridged version of the two volumes "Convex Analysis and Minimization Algorithms I and II" (Grundlehren der mathematischen Wissenschaften Vol. 305 and 306). It presents an introduction to the basic concepts in convex analysis and a study of convex minimization problems (with an emphasis on numerical algorithms). The "backbone" of bot volumes was extracted, some material deleted which was deemed too advanced for an introduction, or too closely attached to numerical algorithms. Some exercises were included and finally the index has been considerably enriched, making it an excellent choice for the purpose of learning and teaching.
Convex Analysis and Minimization Algorithms I
Author: Jean-Baptiste Hiriart-Urruty
Publisher: Springer Science & Business Media
ISBN: 3662027968
Category : Mathematics
Languages : en
Pages : 432
Book Description
Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books.
Publisher: Springer Science & Business Media
ISBN: 3662027968
Category : Mathematics
Languages : en
Pages : 432
Book Description
Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books.
Convex Analysis
Author: Ralph Tyrell Rockafellar
Publisher: Princeton University Press
ISBN: 1400873177
Category : Mathematics
Languages : en
Pages : 470
Book Description
Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.
Publisher: Princeton University Press
ISBN: 1400873177
Category : Mathematics
Languages : en
Pages : 470
Book Description
Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.
Convex Analysis
Author: Georgii G. Magaril-Ilʹyaev
Publisher: American Mathematical Soc.
ISBN: 9780821889640
Category : Mathematics
Languages : en
Pages : 196
Book Description
This book is an introduction to convex analysis and some of its applications. It starts with basis theory, which is explained within the framework of finite-dimensional spaces. The only prerequisites are basic analysis and simple geometry. The second chapter presents some applications of convex analysis, including problems of linear programming, geometry, and approximation. Special attention is paid to applications of convex analysis to Kolmogorov-type inequalities for derivatives of functions is one variable. Chapter 3 collects some results on geometry and convex analysis in infinite-dimensional spaces. A comprehensive introduction written "for beginners" illustrates the fundamentals of convex analysis in finite-dimensional spaces. The book can be used for an advanced undergraduate or graduate level course on convex analysis and its applications. It is also suitable for independent study of this extremely important area of mathematics.
Publisher: American Mathematical Soc.
ISBN: 9780821889640
Category : Mathematics
Languages : en
Pages : 196
Book Description
This book is an introduction to convex analysis and some of its applications. It starts with basis theory, which is explained within the framework of finite-dimensional spaces. The only prerequisites are basic analysis and simple geometry. The second chapter presents some applications of convex analysis, including problems of linear programming, geometry, and approximation. Special attention is paid to applications of convex analysis to Kolmogorov-type inequalities for derivatives of functions is one variable. Chapter 3 collects some results on geometry and convex analysis in infinite-dimensional spaces. A comprehensive introduction written "for beginners" illustrates the fundamentals of convex analysis in finite-dimensional spaces. The book can be used for an advanced undergraduate or graduate level course on convex analysis and its applications. It is also suitable for independent study of this extremely important area of mathematics.
Convex Optimization for Signal Processing and Communications
Author: Chong-Yung Chi
Publisher: CRC Press
ISBN: 1315349809
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications provides fundamental background knowledge of convex optimization, while striking a balance between mathematical theory and applications in signal processing and communications. In addition to comprehensive proofs and perspective interpretations for core convex optimization theory, this book also provides many insightful figures, remarks, illustrative examples, and guided journeys from theory to cutting-edge research explorations, for efficient and in-depth learning, especially for engineering students and professionals. With the powerful convex optimization theory and tools, this book provides you with a new degree of freedom and the capability of solving challenging real-world scientific and engineering problems.
Publisher: CRC Press
ISBN: 1315349809
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications provides fundamental background knowledge of convex optimization, while striking a balance between mathematical theory and applications in signal processing and communications. In addition to comprehensive proofs and perspective interpretations for core convex optimization theory, this book also provides many insightful figures, remarks, illustrative examples, and guided journeys from theory to cutting-edge research explorations, for efficient and in-depth learning, especially for engineering students and professionals. With the powerful convex optimization theory and tools, this book provides you with a new degree of freedom and the capability of solving challenging real-world scientific and engineering problems.
Fundamentals of Functional Analysis
Author: Semën Samsonovich Kutateladze
Publisher: Springer Science & Business Media
ISBN: 9401587558
Category : Mathematics
Languages : en
Pages : 289
Book Description
to the English Translation This is a concise guide to basic sections of modern functional analysis. Included are such topics as the principles of Banach and Hilbert spaces, the theory of multinormed and uniform spaces, the Riesz-Dunford holomorphic functional calculus, the Fredholm index theory, convex analysis and duality theory for locally convex spaces. With standard provisos the presentation is self-contained, exposing about a h- dred famous "named" theorems furnished with complete proofs and culminating in the Gelfand-Nalmark-Segal construction for C*-algebras. The first Russian edition was printed by the Siberian Division of "Nauka" P- lishers in 1983. Since then the monograph has served as the standard textbook on functional analysis at the University of Novosibirsk. This volume is translated from the second Russian edition printed by the Sobolev Institute of Mathematics of the Siberian Division of the Russian Academy of Sciences· in 1995. It incorporates new sections on Radon measures, the Schwartz spaces of distributions, and a supplementary list of theoretical exercises and problems. This edition was typeset using AMS-'lEX, the American Mathematical Society's 'lEX system. To clear my conscience completely, I also confess that := stands for the definor, the assignment operator, signifies the end of the proof.
Publisher: Springer Science & Business Media
ISBN: 9401587558
Category : Mathematics
Languages : en
Pages : 289
Book Description
to the English Translation This is a concise guide to basic sections of modern functional analysis. Included are such topics as the principles of Banach and Hilbert spaces, the theory of multinormed and uniform spaces, the Riesz-Dunford holomorphic functional calculus, the Fredholm index theory, convex analysis and duality theory for locally convex spaces. With standard provisos the presentation is self-contained, exposing about a h- dred famous "named" theorems furnished with complete proofs and culminating in the Gelfand-Nalmark-Segal construction for C*-algebras. The first Russian edition was printed by the Siberian Division of "Nauka" P- lishers in 1983. Since then the monograph has served as the standard textbook on functional analysis at the University of Novosibirsk. This volume is translated from the second Russian edition printed by the Sobolev Institute of Mathematics of the Siberian Division of the Russian Academy of Sciences· in 1995. It incorporates new sections on Radon measures, the Schwartz spaces of distributions, and a supplementary list of theoretical exercises and problems. This edition was typeset using AMS-'lEX, the American Mathematical Society's 'lEX system. To clear my conscience completely, I also confess that := stands for the definor, the assignment operator, signifies the end of the proof.
Convex Optimization Algorithms
Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529280
Category : Mathematics
Languages : en
Pages : 576
Book Description
This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.
Publisher: Athena Scientific
ISBN: 1886529280
Category : Mathematics
Languages : en
Pages : 576
Book Description
This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.
Convex Functional Analysis
Author: Andrew J. Kurdila
Publisher: Springer Science & Business Media
ISBN: 3764373571
Category : Science
Languages : en
Pages : 238
Book Description
This volume is dedicated to the fundamentals of convex functional analysis. It presents those aspects of functional analysis that are extensively used in various applications to mechanics and control theory. The purpose of the text is essentially two-fold. On the one hand, a bare minimum of the theory required to understand the principles of functional, convex and set-valued analysis is presented. Numerous examples and diagrams provide as intuitive an explanation of the principles as possible. On the other hand, the volume is largely self-contained. Those with a background in graduate mathematics will find a concise summary of all main definitions and theorems.
Publisher: Springer Science & Business Media
ISBN: 3764373571
Category : Science
Languages : en
Pages : 238
Book Description
This volume is dedicated to the fundamentals of convex functional analysis. It presents those aspects of functional analysis that are extensively used in various applications to mechanics and control theory. The purpose of the text is essentially two-fold. On the one hand, a bare minimum of the theory required to understand the principles of functional, convex and set-valued analysis is presented. Numerous examples and diagrams provide as intuitive an explanation of the principles as possible. On the other hand, the volume is largely self-contained. Those with a background in graduate mathematics will find a concise summary of all main definitions and theorems.
Convex Analysis and Variational Problems
Author: Ivar Ekeland
Publisher: SIAM
ISBN: 9781611971088
Category : Mathematics
Languages : en
Pages : 414
Book Description
This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.
Publisher: SIAM
ISBN: 9781611971088
Category : Mathematics
Languages : en
Pages : 414
Book Description
This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.
Discrete Convex Analysis
Author: Kazuo Murota
Publisher: SIAM
ISBN: 9780898718508
Category : Mathematics
Languages : en
Pages : 411
Book Description
Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.
Publisher: SIAM
ISBN: 9780898718508
Category : Mathematics
Languages : en
Pages : 411
Book Description
Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.