Author: Erdem Sasmaz
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 195
Book Description
Coal-fired power plants are a major anthropogenic source of worldwide mercury (Hg) emissions. Since mercury is considered to be one of the most toxic metals found in the environment, Hg emissions from coal-fired power plants is of major environmental concern. Mercury in coal is vaporized into its gaseous elemental form throughout the coal combustion process. Elemental Hg can be oxidized in subsequent reactions with other gaseous components (homogeneous) and solid materials (heterogeneous) in coal-fired flue gases. While oxidized Hg in coal-fired flue gases is readily controlled by its adsorption onto fly ash and/or its dissolution into existing solution-based sulfur dioxide (SO2) scrubbers, elemental Hg is not controlled. The extent of elemental Hg formed during coal combustion is difficult to predict since it is dependent on the type of coal burned, combustion conditions, and existing control technologies installed. Therefore, it is important to understand heterogeneous Hg reaction mechanisms to predict the speciation of Hg emissions from coal-fired power plants to design and effectively determine the best applicable control technologies. In this work, theoretical and experimental investigations have been performed to investigate the adsorption and in some cases the oxidation, of Hg on solid surfaces, e.g., calcium oxide (CaO), noble metals and activated carbon (AC). The objective of this research is to identify potential materials that can be used as multi-pollutant sorbents in power plants by carrying out both high-level density functional theory (DFT) electronic structure calculations and experiments to understand heterogeneous chemical pathways of Hg. This research uses a fundamental science-based approach to understand the environmental problems caused by coal-fired energy production and provides solutions to the power generation industry for emissions reductions. Understanding the mechanism associated with Hg and SO2 adsorption on CaO will help to optimize the conditions or material to limit Hg emissions from the flue gas desulfurization process. Plane-wave DFT calculations were used to investigate the binding mechanism of Hg species and SO2 on the CaO(100) surface. The binding strengths on the high-symmetry CaO adsorption sites have been investigated for elemental Hg, SO2, mercury chlorides (HgCl and HgCl2) and mercuric oxide (HgO). It has been discovered that HgCl, HgCl2, and SO2 chemisorb on the CaO(100) surface at 0.125 ML coverage. Binding energies of elemental Hg are minimal indicating a physisorption mechanism. Noble metals such as palladium (Pd), gold (Au), silver (Ag), and copper (Cu) have been proposed to capture elemental Hg. Plane-wave DFT calculations have been carried out to investigate the mercury interactions with Pd binary alloys and overlays in addition to pure Pd, Au, Ag, and Cu surfaces. It has been determined that Pd has the highest mercury binding energy in comparison to other noble metals. In addition, Pd is found to be the primary surface atom responsible for increasing the adsorption of Hg with the surface in both Pd binary alloys and overlays. Deposition of Pd overlays on Au and Ag has been found to enhance the reactivity of the surface by shifting the d-states of surface atoms up in energy. The possible binding mechanisms of elemental Hg onto virgin, brominated and sulfonated AC fiber and brominated powder AC sorbents have been investigated through packed-bed experiments in a stream of air and simulated flue gas conditions, including SO2, hydrogen chloride (HCl), nitrogen oxide (NO) nitrogen dioxide (NO2). A combination of spectroscopy and plane-wave DFT calculations was used to characterize the sorption process. X-ray photoelectron spectroscopy (XPS) and x-ray absorption fine structure (XAFS) spectroscopy were used to analyze the surface and bulk chemical compositions of brominated AC sorbents reacted with Hg0. Through XPS surface characterization studies it was found that Hg adsorption is primarily associated with halogens on the surface. Elemental Hg is oxidized on AC surfaces and the oxidation state of adsorbed Hg is found to be Hg2+. Though plane-wave DFT and density of states (DOS) calculations indicate that Hg is more stable when it is bound to the edge carbon atom interacting with a single bromine bound atop of Hg, a model that includes an interaction between the Hg and an additional Br atom matches best with experimental data obtained from extended x-ray absorption fine structure (EXAFS) spectroscopy. The flue gas species such as HCl and bromine (Br2) enhance the Hg adsorption, while SO2 is found to decrease the Hg adsorption significantly by poisoning the active sites on the AC surface. The AC sorbents represent the most market-ready technology for Hg capture and therefore have been investigated by both theory and experiment in this work. Future work will include similar characterization and bench-scale experiments to test the metal-based materials for the sorbent and oxidation performance.
Fundamental Understanding of Mercury Removal from Coal Combustion
Author: Erdem Sasmaz
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 195
Book Description
Coal-fired power plants are a major anthropogenic source of worldwide mercury (Hg) emissions. Since mercury is considered to be one of the most toxic metals found in the environment, Hg emissions from coal-fired power plants is of major environmental concern. Mercury in coal is vaporized into its gaseous elemental form throughout the coal combustion process. Elemental Hg can be oxidized in subsequent reactions with other gaseous components (homogeneous) and solid materials (heterogeneous) in coal-fired flue gases. While oxidized Hg in coal-fired flue gases is readily controlled by its adsorption onto fly ash and/or its dissolution into existing solution-based sulfur dioxide (SO2) scrubbers, elemental Hg is not controlled. The extent of elemental Hg formed during coal combustion is difficult to predict since it is dependent on the type of coal burned, combustion conditions, and existing control technologies installed. Therefore, it is important to understand heterogeneous Hg reaction mechanisms to predict the speciation of Hg emissions from coal-fired power plants to design and effectively determine the best applicable control technologies. In this work, theoretical and experimental investigations have been performed to investigate the adsorption and in some cases the oxidation, of Hg on solid surfaces, e.g., calcium oxide (CaO), noble metals and activated carbon (AC). The objective of this research is to identify potential materials that can be used as multi-pollutant sorbents in power plants by carrying out both high-level density functional theory (DFT) electronic structure calculations and experiments to understand heterogeneous chemical pathways of Hg. This research uses a fundamental science-based approach to understand the environmental problems caused by coal-fired energy production and provides solutions to the power generation industry for emissions reductions. Understanding the mechanism associated with Hg and SO2 adsorption on CaO will help to optimize the conditions or material to limit Hg emissions from the flue gas desulfurization process. Plane-wave DFT calculations were used to investigate the binding mechanism of Hg species and SO2 on the CaO(100) surface. The binding strengths on the high-symmetry CaO adsorption sites have been investigated for elemental Hg, SO2, mercury chlorides (HgCl and HgCl2) and mercuric oxide (HgO). It has been discovered that HgCl, HgCl2, and SO2 chemisorb on the CaO(100) surface at 0.125 ML coverage. Binding energies of elemental Hg are minimal indicating a physisorption mechanism. Noble metals such as palladium (Pd), gold (Au), silver (Ag), and copper (Cu) have been proposed to capture elemental Hg. Plane-wave DFT calculations have been carried out to investigate the mercury interactions with Pd binary alloys and overlays in addition to pure Pd, Au, Ag, and Cu surfaces. It has been determined that Pd has the highest mercury binding energy in comparison to other noble metals. In addition, Pd is found to be the primary surface atom responsible for increasing the adsorption of Hg with the surface in both Pd binary alloys and overlays. Deposition of Pd overlays on Au and Ag has been found to enhance the reactivity of the surface by shifting the d-states of surface atoms up in energy. The possible binding mechanisms of elemental Hg onto virgin, brominated and sulfonated AC fiber and brominated powder AC sorbents have been investigated through packed-bed experiments in a stream of air and simulated flue gas conditions, including SO2, hydrogen chloride (HCl), nitrogen oxide (NO) nitrogen dioxide (NO2). A combination of spectroscopy and plane-wave DFT calculations was used to characterize the sorption process. X-ray photoelectron spectroscopy (XPS) and x-ray absorption fine structure (XAFS) spectroscopy were used to analyze the surface and bulk chemical compositions of brominated AC sorbents reacted with Hg0. Through XPS surface characterization studies it was found that Hg adsorption is primarily associated with halogens on the surface. Elemental Hg is oxidized on AC surfaces and the oxidation state of adsorbed Hg is found to be Hg2+. Though plane-wave DFT and density of states (DOS) calculations indicate that Hg is more stable when it is bound to the edge carbon atom interacting with a single bromine bound atop of Hg, a model that includes an interaction between the Hg and an additional Br atom matches best with experimental data obtained from extended x-ray absorption fine structure (EXAFS) spectroscopy. The flue gas species such as HCl and bromine (Br2) enhance the Hg adsorption, while SO2 is found to decrease the Hg adsorption significantly by poisoning the active sites on the AC surface. The AC sorbents represent the most market-ready technology for Hg capture and therefore have been investigated by both theory and experiment in this work. Future work will include similar characterization and bench-scale experiments to test the metal-based materials for the sorbent and oxidation performance.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 195
Book Description
Coal-fired power plants are a major anthropogenic source of worldwide mercury (Hg) emissions. Since mercury is considered to be one of the most toxic metals found in the environment, Hg emissions from coal-fired power plants is of major environmental concern. Mercury in coal is vaporized into its gaseous elemental form throughout the coal combustion process. Elemental Hg can be oxidized in subsequent reactions with other gaseous components (homogeneous) and solid materials (heterogeneous) in coal-fired flue gases. While oxidized Hg in coal-fired flue gases is readily controlled by its adsorption onto fly ash and/or its dissolution into existing solution-based sulfur dioxide (SO2) scrubbers, elemental Hg is not controlled. The extent of elemental Hg formed during coal combustion is difficult to predict since it is dependent on the type of coal burned, combustion conditions, and existing control technologies installed. Therefore, it is important to understand heterogeneous Hg reaction mechanisms to predict the speciation of Hg emissions from coal-fired power plants to design and effectively determine the best applicable control technologies. In this work, theoretical and experimental investigations have been performed to investigate the adsorption and in some cases the oxidation, of Hg on solid surfaces, e.g., calcium oxide (CaO), noble metals and activated carbon (AC). The objective of this research is to identify potential materials that can be used as multi-pollutant sorbents in power plants by carrying out both high-level density functional theory (DFT) electronic structure calculations and experiments to understand heterogeneous chemical pathways of Hg. This research uses a fundamental science-based approach to understand the environmental problems caused by coal-fired energy production and provides solutions to the power generation industry for emissions reductions. Understanding the mechanism associated with Hg and SO2 adsorption on CaO will help to optimize the conditions or material to limit Hg emissions from the flue gas desulfurization process. Plane-wave DFT calculations were used to investigate the binding mechanism of Hg species and SO2 on the CaO(100) surface. The binding strengths on the high-symmetry CaO adsorption sites have been investigated for elemental Hg, SO2, mercury chlorides (HgCl and HgCl2) and mercuric oxide (HgO). It has been discovered that HgCl, HgCl2, and SO2 chemisorb on the CaO(100) surface at 0.125 ML coverage. Binding energies of elemental Hg are minimal indicating a physisorption mechanism. Noble metals such as palladium (Pd), gold (Au), silver (Ag), and copper (Cu) have been proposed to capture elemental Hg. Plane-wave DFT calculations have been carried out to investigate the mercury interactions with Pd binary alloys and overlays in addition to pure Pd, Au, Ag, and Cu surfaces. It has been determined that Pd has the highest mercury binding energy in comparison to other noble metals. In addition, Pd is found to be the primary surface atom responsible for increasing the adsorption of Hg with the surface in both Pd binary alloys and overlays. Deposition of Pd overlays on Au and Ag has been found to enhance the reactivity of the surface by shifting the d-states of surface atoms up in energy. The possible binding mechanisms of elemental Hg onto virgin, brominated and sulfonated AC fiber and brominated powder AC sorbents have been investigated through packed-bed experiments in a stream of air and simulated flue gas conditions, including SO2, hydrogen chloride (HCl), nitrogen oxide (NO) nitrogen dioxide (NO2). A combination of spectroscopy and plane-wave DFT calculations was used to characterize the sorption process. X-ray photoelectron spectroscopy (XPS) and x-ray absorption fine structure (XAFS) spectroscopy were used to analyze the surface and bulk chemical compositions of brominated AC sorbents reacted with Hg0. Through XPS surface characterization studies it was found that Hg adsorption is primarily associated with halogens on the surface. Elemental Hg is oxidized on AC surfaces and the oxidation state of adsorbed Hg is found to be Hg2+. Though plane-wave DFT and density of states (DOS) calculations indicate that Hg is more stable when it is bound to the edge carbon atom interacting with a single bromine bound atop of Hg, a model that includes an interaction between the Hg and an additional Br atom matches best with experimental data obtained from extended x-ray absorption fine structure (EXAFS) spectroscopy. The flue gas species such as HCl and bromine (Br2) enhance the Hg adsorption, while SO2 is found to decrease the Hg adsorption significantly by poisoning the active sites on the AC surface. The AC sorbents represent the most market-ready technology for Hg capture and therefore have been investigated by both theory and experiment in this work. Future work will include similar characterization and bench-scale experiments to test the metal-based materials for the sorbent and oxidation performance.
Coal Fired Flue Gas Mercury Emission Controls
Author: Jiang Wu
Publisher: Springer
ISBN: 3662463474
Category : Technology & Engineering
Languages : en
Pages : 163
Book Description
Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations. Readers will arrive at a comprehensive understanding of various mercury emission control methods that are suitable for industrial applications. The book is intended for scientists, researchers, engineers and graduate students in the fields of energy science and technology, environmental science and technology and chemical engineering.
Publisher: Springer
ISBN: 3662463474
Category : Technology & Engineering
Languages : en
Pages : 163
Book Description
Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations. Readers will arrive at a comprehensive understanding of various mercury emission control methods that are suitable for industrial applications. The book is intended for scientists, researchers, engineers and graduate students in the fields of energy science and technology, environmental science and technology and chemical engineering.
Advancing the Fundamental Sciences
Author:
Publisher:
ISBN:
Category : Earth sciences
Languages : en
Pages : 314
Book Description
Publisher:
ISBN:
Category : Earth sciences
Languages : en
Pages : 314
Book Description
Oxy-fuel Combustion
Author: Chuguang Zheng
Publisher: Academic Press
ISBN: 0128123222
Category : Science
Languages : en
Pages : 386
Book Description
Oxy-fuel Combustion: Fundamentals, Theory and Practice provides a comprehensive review of various aspects of oxy-fuel combustion technology, including its concept, fundamental theory, pilot practice, large-scale feasibility studies and related practical issues, such as the commissioning and operation of an oxy-fuel combustion plant. Oxy-fuel combustion, as the most practical large-scale carbon capture power generation technology, has attracted significant attention in the past two decades. As significant progress has been achieved in worldwide demonstration and the oxy-combustion concept confirmed by Schwartze Pump, CUIDEN, Callide, Ponferrada and Yingcheng projects in the past five years, this book provides a timely addition for discussion and study. Covers oxy-fuel combustion technology Includes concepts, fundamentals, pilots and large-scale feasibility studies Considers related practical issues, such as the commissioning and operation of an oxy-fuel combustion plant Focuses on theories and methods closely related to engineering practice
Publisher: Academic Press
ISBN: 0128123222
Category : Science
Languages : en
Pages : 386
Book Description
Oxy-fuel Combustion: Fundamentals, Theory and Practice provides a comprehensive review of various aspects of oxy-fuel combustion technology, including its concept, fundamental theory, pilot practice, large-scale feasibility studies and related practical issues, such as the commissioning and operation of an oxy-fuel combustion plant. Oxy-fuel combustion, as the most practical large-scale carbon capture power generation technology, has attracted significant attention in the past two decades. As significant progress has been achieved in worldwide demonstration and the oxy-combustion concept confirmed by Schwartze Pump, CUIDEN, Callide, Ponferrada and Yingcheng projects in the past five years, this book provides a timely addition for discussion and study. Covers oxy-fuel combustion technology Includes concepts, fundamentals, pilots and large-scale feasibility studies Considers related practical issues, such as the commissioning and operation of an oxy-fuel combustion plant Focuses on theories and methods closely related to engineering practice
NexGen Technologies for Mining and Fuel Industries (Volume I and II)
Author: Pradeep K. Singh
Publisher: Allied Publishers
ISBN: 9385926403
Category : Fuel
Languages : en
Pages : 1562
Book Description
The papers in these two volumes were presented at the International Conference on “NexGen Technologies for Mining and Fuel Industries” [NxGnMiFu-2017] in New Delhi from February 15-17, 2017, organized by CSIR-Central Institute of Mining and Fuel Research, Dhanbad, India. The proceedings include the contributions from authors across the globe on the latest research on mining and fuel technologies. The major issues focused on are: Innovative Mining Technology, Rock Mechanics and Stability Analysis, Advances in Explosives and Blasting, Mine Safety and Risk Management, Computer Simulation and Mine Automation, Natural Resource Management for Sustainable Development, Environmental Impacts and Remediation, Paste Fill Technology and Waste Utilisation, Fly Ash Management, Clean Coal Initiatives, Mineral Processing and Coal Beneficiation, Quality Coal for Power Generation and Conventional and Non-conventional Fuels and Gases. This collection of contemporary articles contains unique knowledge, case studies, ideas and insights, a must-have for researchers and engineers working in the areas of mining technologies and fuel sciences.
Publisher: Allied Publishers
ISBN: 9385926403
Category : Fuel
Languages : en
Pages : 1562
Book Description
The papers in these two volumes were presented at the International Conference on “NexGen Technologies for Mining and Fuel Industries” [NxGnMiFu-2017] in New Delhi from February 15-17, 2017, organized by CSIR-Central Institute of Mining and Fuel Research, Dhanbad, India. The proceedings include the contributions from authors across the globe on the latest research on mining and fuel technologies. The major issues focused on are: Innovative Mining Technology, Rock Mechanics and Stability Analysis, Advances in Explosives and Blasting, Mine Safety and Risk Management, Computer Simulation and Mine Automation, Natural Resource Management for Sustainable Development, Environmental Impacts and Remediation, Paste Fill Technology and Waste Utilisation, Fly Ash Management, Clean Coal Initiatives, Mineral Processing and Coal Beneficiation, Quality Coal for Power Generation and Conventional and Non-conventional Fuels and Gases. This collection of contemporary articles contains unique knowledge, case studies, ideas and insights, a must-have for researchers and engineers working in the areas of mining technologies and fuel sciences.
Fundamental Concept in Environmental Studies
Author: D.D.Mishra
Publisher: S. Chand Publishing
ISBN: 8121929377
Category : Science
Languages : en
Pages : 279
Book Description
For B.A. , B.Sc. , B.Com. , B.H.Sc. , B.C.A., (Management) and other Undergraduate Classes as per UGC Model Curriculumn In addition to certain corrections, topics like Hydrologic Cycle, Air Pollution, Solar and Wind Energies are modified in the light of present requirement. Some new topics like Dissolved Oxygen, Biological Oxygen Demand, Chemical Oxygen Demand, Natural Geysers, Environmental Club, Green Accounting, Honey and Bee Keeping, Social Forestry are also introduced. With additional data, new topics and necessary diagrammes, the book will be of immense use and more popular among students and readers.
Publisher: S. Chand Publishing
ISBN: 8121929377
Category : Science
Languages : en
Pages : 279
Book Description
For B.A. , B.Sc. , B.Com. , B.H.Sc. , B.C.A., (Management) and other Undergraduate Classes as per UGC Model Curriculumn In addition to certain corrections, topics like Hydrologic Cycle, Air Pollution, Solar and Wind Energies are modified in the light of present requirement. Some new topics like Dissolved Oxygen, Biological Oxygen Demand, Chemical Oxygen Demand, Natural Geysers, Environmental Club, Green Accounting, Honey and Bee Keeping, Social Forestry are also introduced. With additional data, new topics and necessary diagrammes, the book will be of immense use and more popular among students and readers.
Mercury study report to Congress
Author:
Publisher: DIANE Publishing
ISBN: 1428903720
Category :
Languages : en
Pages : 1811
Book Description
Publisher: DIANE Publishing
ISBN: 1428903720
Category :
Languages : en
Pages : 1811
Book Description
Mercury study report to Congress Vol. 8
Author:
Publisher: DIANE Publishing
ISBN: 1428953868
Category :
Languages : en
Pages : 207
Book Description
Publisher: DIANE Publishing
ISBN: 1428953868
Category :
Languages : en
Pages : 207
Book Description
Coal
Author: National Research Council
Publisher: National Academies Press
ISBN: 030911022X
Category : Science
Languages : en
Pages : 183
Book Description
Coal will continue to provide a major portion of energy requirements in the United States for at least the next several decades. It is imperative that accurate information describing the amount, location, and quality of the coal resources and reserves be available to fulfill energy needs. It is also important that the United States extract its coal resources efficiently, safely, and in an environmentally responsible manner. A renewed focus on federal support for coal-related research, coordinated across agencies and with the active participation of the states and industrial sector, is a critical element for each of these requirements. Coal focuses on the research and development needs and priorities in the areas of coal resource and reserve assessments, coal mining and processing, transportation of coal and coal products, and coal utilization.
Publisher: National Academies Press
ISBN: 030911022X
Category : Science
Languages : en
Pages : 183
Book Description
Coal will continue to provide a major portion of energy requirements in the United States for at least the next several decades. It is imperative that accurate information describing the amount, location, and quality of the coal resources and reserves be available to fulfill energy needs. It is also important that the United States extract its coal resources efficiently, safely, and in an environmentally responsible manner. A renewed focus on federal support for coal-related research, coordinated across agencies and with the active participation of the states and industrial sector, is a critical element for each of these requirements. Coal focuses on the research and development needs and priorities in the areas of coal resource and reserve assessments, coal mining and processing, transportation of coal and coal products, and coal utilization.
Coal Combustion Byproducts and Environmental Issues
Author: Kenneth S. Sajwan
Publisher: Springer Science & Business Media
ISBN: 0387321772
Category : Science
Languages : en
Pages : 248
Book Description
Coal Combustion Byproducts and Environmental Issues addresses the major implications and critical issues surrounding coal combustion products and their impact upon the environment. It provides essential information for scientists conducting research on coal and coal combustion products, but also serves as a valuable reference for a wide variety of researchers and other professionals in the energy industry and in the fields of public health, engineering, and environmental sciences. The ultimate goal of this volume is to benefit both our economy and our environment as humanity enters the second half of the fossil fuel era.
Publisher: Springer Science & Business Media
ISBN: 0387321772
Category : Science
Languages : en
Pages : 248
Book Description
Coal Combustion Byproducts and Environmental Issues addresses the major implications and critical issues surrounding coal combustion products and their impact upon the environment. It provides essential information for scientists conducting research on coal and coal combustion products, but also serves as a valuable reference for a wide variety of researchers and other professionals in the energy industry and in the fields of public health, engineering, and environmental sciences. The ultimate goal of this volume is to benefit both our economy and our environment as humanity enters the second half of the fossil fuel era.