Existence Theorems for Ordinary Differential Equations

Existence Theorems for Ordinary Differential Equations PDF Author: Francis J. Murray
Publisher: Courier Corporation
ISBN: 0486154955
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
This text examines fundamental and general existence theorems, along with uniqueness theorems and Picard iterants, and applies them to properties of solutions and linear differential equations. 1954 edition.

Existence Theorems for Ordinary Differential Equations

Existence Theorems for Ordinary Differential Equations PDF Author: Francis J. Murray
Publisher: Courier Corporation
ISBN: 0486154955
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
This text examines fundamental and general existence theorems, along with uniqueness theorems and Picard iterants, and applies them to properties of solutions and linear differential equations. 1954 edition.

Fundamental Existence Theorems

Fundamental Existence Theorems PDF Author: Gilbert Ames Bliss
Publisher:
ISBN:
Category : Functions
Languages : en
Pages : 122

Get Book Here

Book Description


Basic Theory of Ordinary Differential Equations

Basic Theory of Ordinary Differential Equations PDF Author: Po-Fang Hsieh
Publisher: Springer Science & Business Media
ISBN: 1461215064
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
Providing readers with the very basic knowledge necessary to begin research on differential equations with professional ability, the selection of topics here covers the methods and results that are applicable in a variety of different fields. The book is divided into four parts. The first covers fundamental existence, uniqueness, smoothness with respect to data, and nonuniqueness. The second part describes the basic results concerning linear differential equations, while the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history, and hints and comments for many problems are given throughout. With 114 illustrations and 206 exercises, the book is suitable for a one-year graduate course, as well as a reference book for research mathematicians.

Existence Theorems in Partial Differential Equations. (AM-23), Volume 23

Existence Theorems in Partial Differential Equations. (AM-23), Volume 23 PDF Author: Dorothy L. Bernstein
Publisher: Princeton University Press
ISBN: 1400882222
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
The description for this book, Existence Theorems in Partial Differential Equations. (AM-23), Volume 23, will be forthcoming.

Existence Theory for Nonlinear Ordinary Differential Equations

Existence Theory for Nonlinear Ordinary Differential Equations PDF Author: Donal O'Regan
Publisher: Springer Science & Business Media
ISBN: 9401715173
Category : Mathematics
Languages : en
Pages : 207

Get Book Here

Book Description
We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t > 0 and near zero. Familiar examples show that the interval of existence can be arbi trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here.

The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra PDF Author: Benjamin Fine
Publisher: Springer Science & Business Media
ISBN: 1461219280
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.

Book of Proof

Book of Proof PDF Author: Richard H. Hammack
Publisher:
ISBN: 9780989472111
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Foundations of Analysis

Foundations of Analysis PDF Author: Joseph L. Taylor
Publisher: American Mathematical Soc.
ISBN: 0821889842
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.

Change and Variations

Change and Variations PDF Author: Jeremy Gray
Publisher: Springer Nature
ISBN: 3030705757
Category : Mathematics
Languages : en
Pages : 421

Get Book Here

Book Description
This book presents a history of differential equations, both ordinary and partial, as well as the calculus of variations, from the origins of the subjects to around 1900. Topics treated include the wave equation in the hands of d’Alembert and Euler; Fourier’s solutions to the heat equation and the contribution of Kovalevskaya; the work of Euler, Gauss, Kummer, Riemann, and Poincaré on the hypergeometric equation; Green’s functions, the Dirichlet principle, and Schwarz’s solution of the Dirichlet problem; minimal surfaces; the telegraphists’ equation and Thomson’s successful design of the trans-Atlantic cable; Riemann’s paper on shock waves; the geometrical interpretation of mechanics; and aspects of the study of the calculus of variations from the problems of the catenary and the brachistochrone to attempts at a rigorous theory by Weierstrass, Kneser, and Hilbert. Three final chapters look at how the theory of partial differential equations stood around 1900, as they were treated by Picard and Hadamard. There are also extensive, new translations of original papers by Cauchy, Riemann, Schwarz, Darboux, and Picard. The first book to cover the history of differential equations and the calculus of variations in such breadth and detail, it will appeal to anyone with an interest in the field. Beyond secondary school mathematics and physics, a course in mathematical analysis is the only prerequisite to fully appreciate its contents. Based on a course for third-year university students, the book contains numerous historical and mathematical exercises, offers extensive advice to the student on how to write essays, and can easily be used in whole or in part as a course in the history of mathematics. Several appendices help make the book self-contained and suitable for self-study.

Foundations of Potential Theory

Foundations of Potential Theory PDF Author: Oliver Dimon Kellogg
Publisher: Courier Corporation
ISBN: 9780486601441
Category : Science
Languages : en
Pages : 404

Get Book Here

Book Description
Introduction to fundamentals of potential functions covers the force of gravity, fields of force, potentials, harmonic functions, electric images and Green's function, sequences of harmonic functions, fundamental existence theorems, the logarithmic potential, and much more. Detailed proofs rigorously worked out. 1929 edition.