Author: Fritz Oberhettinger
Publisher: Springer Science & Business Media
ISBN: 3642743498
Category : Mathematics
Languages : en
Pages : 261
Book Description
This book presents a collection of integrals of the sine-, cosine- and exponential Fourier transforms of functions f(x). It is the second, considerably enlarged version of the author's previous publication "Tabellen zur Fourier Transformation" (Springer-Verlag 1957). In addition to numerous new results in Parts I-III, a new Part IV has been introduced dealing with problems in mathematical statistics. The aim of the book is to serve as a reference work for all those whose main interest is in the application of Fourier transform methods. These methods have found a wide variety of applications in the natural and technical sciences.
Tables of Fourier Transforms and Fourier Transforms of Distributions
Author: Fritz Oberhettinger
Publisher: Springer Science & Business Media
ISBN: 3642743498
Category : Mathematics
Languages : en
Pages : 261
Book Description
This book presents a collection of integrals of the sine-, cosine- and exponential Fourier transforms of functions f(x). It is the second, considerably enlarged version of the author's previous publication "Tabellen zur Fourier Transformation" (Springer-Verlag 1957). In addition to numerous new results in Parts I-III, a new Part IV has been introduced dealing with problems in mathematical statistics. The aim of the book is to serve as a reference work for all those whose main interest is in the application of Fourier transform methods. These methods have found a wide variety of applications in the natural and technical sciences.
Publisher: Springer Science & Business Media
ISBN: 3642743498
Category : Mathematics
Languages : en
Pages : 261
Book Description
This book presents a collection of integrals of the sine-, cosine- and exponential Fourier transforms of functions f(x). It is the second, considerably enlarged version of the author's previous publication "Tabellen zur Fourier Transformation" (Springer-Verlag 1957). In addition to numerous new results in Parts I-III, a new Part IV has been introduced dealing with problems in mathematical statistics. The aim of the book is to serve as a reference work for all those whose main interest is in the application of Fourier transform methods. These methods have found a wide variety of applications in the natural and technical sciences.
Fourier Transforms
Author: Eric W. Hansen
Publisher: John Wiley & Sons
ISBN: 1118479149
Category : Mathematics
Languages : en
Pages : 788
Book Description
Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors—ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods. Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers. Class-tested at Dartmouth Provides the same solid background as classic texts in the field, but with an emphasis on digital and other contemporary applications to signal and image processing Modular coverage of material allows for topics to be covered by preference MATLAB files and Solutions Manual available to instructors Over 300 figures, 200 worked examples, and 432 homework problems
Publisher: John Wiley & Sons
ISBN: 1118479149
Category : Mathematics
Languages : en
Pages : 788
Book Description
Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors—ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods. Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers. Class-tested at Dartmouth Provides the same solid background as classic texts in the field, but with an emphasis on digital and other contemporary applications to signal and image processing Modular coverage of material allows for topics to be covered by preference MATLAB files and Solutions Manual available to instructors Over 300 figures, 200 worked examples, and 432 homework problems
Fourier Transforms
Author: Ian Naismith Sneddon
Publisher: Courier Corporation
ISBN: 9780486685229
Category : Mathematics
Languages : en
Pages : 564
Book Description
Focusing on applications of Fourier transforms and related topics rather than theory, this accessible treatment is suitable for students and researchers interested in boundary value problems of physics and engineering. 1951 edition.
Publisher: Courier Corporation
ISBN: 9780486685229
Category : Mathematics
Languages : en
Pages : 564
Book Description
Focusing on applications of Fourier transforms and related topics rather than theory, this accessible treatment is suitable for students and researchers interested in boundary value problems of physics and engineering. 1951 edition.
The Fourier Transform and Its Applications
Author: Ronald Newbold Bracewell
Publisher:
ISBN:
Category : Fourier transformations
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Fourier transformations
Languages : en
Pages :
Book Description
The Analytical Theory of Heat
Author: Jean-Baptiste-Joseph Fourier
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 534
Book Description
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 534
Book Description
Lectures on the Fourier Transform and Its Applications
Author: Brad G. Osgood
Publisher: American Mathematical Soc.
ISBN: 1470441918
Category : Mathematics
Languages : en
Pages : 713
Book Description
This book is derived from lecture notes for a course on Fourier analysis for engineering and science students at the advanced undergraduate or beginning graduate level. Beyond teaching specific topics and techniques—all of which are important in many areas of engineering and science—the author's goal is to help engineering and science students cultivate more advanced mathematical know-how and increase confidence in learning and using mathematics, as well as appreciate the coherence of the subject. He promises the readers a little magic on every page. The section headings are all recognizable to mathematicians, but the arrangement and emphasis are directed toward students from other disciplines. The material also serves as a foundation for advanced courses in signal processing and imaging. There are over 200 problems, many of which are oriented to applications, and a number use standard software. An unusual feature for courses meant for engineers is a more detailed and accessible treatment of distributions and the generalized Fourier transform. There is also more coverage of higher-dimensional phenomena than is found in most books at this level.
Publisher: American Mathematical Soc.
ISBN: 1470441918
Category : Mathematics
Languages : en
Pages : 713
Book Description
This book is derived from lecture notes for a course on Fourier analysis for engineering and science students at the advanced undergraduate or beginning graduate level. Beyond teaching specific topics and techniques—all of which are important in many areas of engineering and science—the author's goal is to help engineering and science students cultivate more advanced mathematical know-how and increase confidence in learning and using mathematics, as well as appreciate the coherence of the subject. He promises the readers a little magic on every page. The section headings are all recognizable to mathematicians, but the arrangement and emphasis are directed toward students from other disciplines. The material also serves as a foundation for advanced courses in signal processing and imaging. There are over 200 problems, many of which are oriented to applications, and a number use standard software. An unusual feature for courses meant for engineers is a more detailed and accessible treatment of distributions and the generalized Fourier transform. There is also more coverage of higher-dimensional phenomena than is found in most books at this level.
Fourier Transforms in NMR, Optical, and Mass Spectrometry
Author: A.G. Marshall
Publisher: Elsevier
ISBN: 148329384X
Category : Science
Languages : en
Pages : 470
Book Description
Written by spectroscopists for spectroscopists, here is a book which is not only a valuable handbook and reference work, but also an ideal teaching text for Fourier transform methods as they are applied in spectroscopy. It offers the first unified treatment of the three most popular types of FT/spectroscopy, with uniform notation and complete indexing of specialized terms. All mathematics is self-contained, and requires only a knowledge of simple calculus. The main emphasis is on pictures and physical analogs rather than detailed algebra. Instructive problems, presented at the end of each chapter, offer extensions of the basic treatment. Solutions are given or outlined for all problems.The book offers a wealth of practical information to spectroscopists. Non-ideal effects are treated in detail: noise (source- and detector-limited); non-linear response; limits to spectrometer performance based on finite detection period, finite data size, mis-phasing, etc. Common puzzles and paradoxes are explained: e.g. use of mathematically complex variables to represent physically real quantities; interpretation of negative frequency signals; on-resonance vs. off-resonance response; interpolation (when it helps and when it doesn't); ultimate accuracy of the data; differences between linearly- and circularly-polarized radiation; multiplex advantage or disadvantage, etc.Chapter 1 introduces the fundamental line shapes encountered in spectroscopy, from a simple classical mass-on-a-spring model. The Fourier transform relationship between the time-domain response to a sudden impulse and the steady-state frequency-domain response (absorption and dispersion spectra) to a continuous oscillation is established and illustrated. Chapters 2 and 3 summarize the basic mathematics (definitions, formulas, theorems, and examples) for continuous (analog) and discrete (digital) Fourier transforms, and their practical implications. Experimental aspects which are common to the signal (Chapter 4) and noise (Chapter 5) in all forms of Fourier transform spectrometry are followed by separate chapters for treatment of those features which are unique to FT/MS, FT/optical, FT/NMR, and other types of FT/spectroscopy.The list of references includes both historical and comprehensive reviews and monographs, along with articles describing several key developments. The appendices provide instant access to FT integrals and fast algorithms as well as a pictorial library of common Fourier transform function pairs. The comprehensive index is designed to enable the reader to locate particular key words, including those with more than one name.
Publisher: Elsevier
ISBN: 148329384X
Category : Science
Languages : en
Pages : 470
Book Description
Written by spectroscopists for spectroscopists, here is a book which is not only a valuable handbook and reference work, but also an ideal teaching text for Fourier transform methods as they are applied in spectroscopy. It offers the first unified treatment of the three most popular types of FT/spectroscopy, with uniform notation and complete indexing of specialized terms. All mathematics is self-contained, and requires only a knowledge of simple calculus. The main emphasis is on pictures and physical analogs rather than detailed algebra. Instructive problems, presented at the end of each chapter, offer extensions of the basic treatment. Solutions are given or outlined for all problems.The book offers a wealth of practical information to spectroscopists. Non-ideal effects are treated in detail: noise (source- and detector-limited); non-linear response; limits to spectrometer performance based on finite detection period, finite data size, mis-phasing, etc. Common puzzles and paradoxes are explained: e.g. use of mathematically complex variables to represent physically real quantities; interpretation of negative frequency signals; on-resonance vs. off-resonance response; interpolation (when it helps and when it doesn't); ultimate accuracy of the data; differences between linearly- and circularly-polarized radiation; multiplex advantage or disadvantage, etc.Chapter 1 introduces the fundamental line shapes encountered in spectroscopy, from a simple classical mass-on-a-spring model. The Fourier transform relationship between the time-domain response to a sudden impulse and the steady-state frequency-domain response (absorption and dispersion spectra) to a continuous oscillation is established and illustrated. Chapters 2 and 3 summarize the basic mathematics (definitions, formulas, theorems, and examples) for continuous (analog) and discrete (digital) Fourier transforms, and their practical implications. Experimental aspects which are common to the signal (Chapter 4) and noise (Chapter 5) in all forms of Fourier transform spectrometry are followed by separate chapters for treatment of those features which are unique to FT/MS, FT/optical, FT/NMR, and other types of FT/spectroscopy.The list of references includes both historical and comprehensive reviews and monographs, along with articles describing several key developments. The appendices provide instant access to FT integrals and fast algorithms as well as a pictorial library of common Fourier transform function pairs. The comprehensive index is designed to enable the reader to locate particular key words, including those with more than one name.
Fourier Transforms
Author: Robert M. Gray
Publisher: Springer Science & Business Media
ISBN: 1461523591
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
The Fourier transform is one of the most important mathematical tools in a wide variety of fields in science and engineering. In the abstract it can be viewed as the transformation of a signal in one domain (typically time or space) into another domain, the frequency domain. Applications of Fourier transforms, often called Fourier analysis or harmonic analysis, provide useful decompositions of signals into fundamental or "primitive" components, provide shortcuts to the computation of complicated sums and integrals, and often reveal hidden structure in data. Fourier analysis lies at the base of many theories of science and plays a fundamental role in practical engineering design. The origins of Fourier analysis in science can be found in Ptolemy's decomposing celestial orbits into cycles and epicycles and Pythagorus' de composing music into consonances. Its modern history began with the eighteenth century work of Bernoulli, Euler, and Gauss on what later came to be known as Fourier series. J. Fourier in his 1822 Theorie analytique de la Chaleur [16] (still available as a Dover reprint) was the first to claim that arbitrary periodic functions could be expanded in a trigonometric (later called a Fourier) series, a claim that was eventually shown to be incorrect, although not too far from the truth. It is an amusing historical sidelight that this work won a prize from the French Academy, in spite of serious concerns expressed by the judges (Laplace, Lagrange, and Legendre) re garding Fourier's lack of rigor.
Publisher: Springer Science & Business Media
ISBN: 1461523591
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
The Fourier transform is one of the most important mathematical tools in a wide variety of fields in science and engineering. In the abstract it can be viewed as the transformation of a signal in one domain (typically time or space) into another domain, the frequency domain. Applications of Fourier transforms, often called Fourier analysis or harmonic analysis, provide useful decompositions of signals into fundamental or "primitive" components, provide shortcuts to the computation of complicated sums and integrals, and often reveal hidden structure in data. Fourier analysis lies at the base of many theories of science and plays a fundamental role in practical engineering design. The origins of Fourier analysis in science can be found in Ptolemy's decomposing celestial orbits into cycles and epicycles and Pythagorus' de composing music into consonances. Its modern history began with the eighteenth century work of Bernoulli, Euler, and Gauss on what later came to be known as Fourier series. J. Fourier in his 1822 Theorie analytique de la Chaleur [16] (still available as a Dover reprint) was the first to claim that arbitrary periodic functions could be expanded in a trigonometric (later called a Fourier) series, a claim that was eventually shown to be incorrect, although not too far from the truth. It is an amusing historical sidelight that this work won a prize from the French Academy, in spite of serious concerns expressed by the judges (Laplace, Lagrange, and Legendre) re garding Fourier's lack of rigor.
Linear Systems, Fourier Transforms, and Optics
Author: Jack D. Gaskill
Publisher: John Wiley & Sons
ISBN: 0471292885
Category : Science
Languages : en
Pages : 580
Book Description
A complete and balanced account of communication theory, providing an understanding of both Fourier analysis (and the concepts associated with linear systems) and the characterization of such systems by mathematical operators. Presents applications of the theories to the diffraction of optical wave-fields and the analysis of image-forming systems. Emphasizes a strong mathematical foundation and includes an in-depth consideration of the phenomena of diffraction. Combines all theories to describe the image-forming process in terms of a linear filtering operation for both coherent and incoherent imaging. Chapters provide carefully designed sets of problems. Also includes extensive tables of properties and pairs of Fourier transforms and Hankle Transforms.
Publisher: John Wiley & Sons
ISBN: 0471292885
Category : Science
Languages : en
Pages : 580
Book Description
A complete and balanced account of communication theory, providing an understanding of both Fourier analysis (and the concepts associated with linear systems) and the characterization of such systems by mathematical operators. Presents applications of the theories to the diffraction of optical wave-fields and the analysis of image-forming systems. Emphasizes a strong mathematical foundation and includes an in-depth consideration of the phenomena of diffraction. Combines all theories to describe the image-forming process in terms of a linear filtering operation for both coherent and incoherent imaging. Chapters provide carefully designed sets of problems. Also includes extensive tables of properties and pairs of Fourier transforms and Hankle Transforms.
Fourier and Laplace Transforms
Author:
Publisher: Cambridge University Press
ISBN: 9780521534413
Category : Mathematics
Languages : en
Pages : 468
Book Description
This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.
Publisher: Cambridge University Press
ISBN: 9780521534413
Category : Mathematics
Languages : en
Pages : 468
Book Description
This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.