Author: Ta-Pei Cheng
Publisher: Oxford University Press
ISBN: 0192652249
Category : Science
Languages : en
Pages : 549
Book Description
This is a practical introduction to the principal ideas in gauge theory and their applications to elementary particle physics. It explains technique and methodology with simple exposition backed up by many illustrative examples. Derivations, some of well known results, are presented in sufficient detail to make the text accessible to readers entering the field for the first time. The book focuses on the strong interaction theory of quantum chromodynamics and the electroweak interaction theory of Glashow, Weinberg, and Salam, as well as the grand unification theory, exemplified by the simplest SU(5) model. Not intended as an exhaustive survey, the book nevertheless provides the general background necessary for a serious student who wishes to specialize in the field of elementary particle theory. Physicists with an interest in general aspects of gauge theory will also find the book highly useful.
Gauge Theory of Elementary Particle Physics
Elementary Particle Physics
Author: Yorikiyo Nagashima
Publisher: John Wiley & Sons
ISBN: 3527643966
Category : Science
Languages : en
Pages : 980
Book Description
ACCOUNTING PRINCIPLES Meeting the need for a coherently written and comprehensive compendium combining field theory and particle physics for advanced students and researchers, this volume directly links the theory to the experiments. It is clearly divided into two sections covering approaches to field theory and the Standard Model, and rounded off with numerous useful appendices. A timely work for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics. From the contents: Particles and Fields Lorentz Invariance Dirac Equation Field Quantization Scattering Matrix QED: Quantum Electrodynamics Radiative Corrections and Tests of Qed Symmetries Path Integral : Basics Path Integral Approach to Field Theory Accelerator and Detector Technology Spectroscopy The Quark Model Weak Interaction Neutral Kaons and CP Violation Hadron Structure Gauge Theories Appendices Volume 2 (2013, ISBN 3-527-40966-1) will concentrate on the main aspects of the Standard Model by addressing its recent developments and future prospects. Furthermore, it will give some thought to intriguing ideas beyond the Standard Model, including the Higgs boson, the neutrino, the concepts of the Grand Unified Theory and supersymmetry, axions, and cosmological developments.
Publisher: John Wiley & Sons
ISBN: 3527643966
Category : Science
Languages : en
Pages : 980
Book Description
ACCOUNTING PRINCIPLES Meeting the need for a coherently written and comprehensive compendium combining field theory and particle physics for advanced students and researchers, this volume directly links the theory to the experiments. It is clearly divided into two sections covering approaches to field theory and the Standard Model, and rounded off with numerous useful appendices. A timely work for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics. From the contents: Particles and Fields Lorentz Invariance Dirac Equation Field Quantization Scattering Matrix QED: Quantum Electrodynamics Radiative Corrections and Tests of Qed Symmetries Path Integral : Basics Path Integral Approach to Field Theory Accelerator and Detector Technology Spectroscopy The Quark Model Weak Interaction Neutral Kaons and CP Violation Hadron Structure Gauge Theories Appendices Volume 2 (2013, ISBN 3-527-40966-1) will concentrate on the main aspects of the Standard Model by addressing its recent developments and future prospects. Furthermore, it will give some thought to intriguing ideas beyond the Standard Model, including the Higgs boson, the neutrino, the concepts of the Grand Unified Theory and supersymmetry, axions, and cosmological developments.
Particles, Fields and Forces
Author: Wouter Schmitz
Publisher: Springer
ISBN: 3030128784
Category : Science
Languages : en
Pages : 322
Book Description
How can fundamental particles exist as waves in the vacuum? How can such waves have particle properties such as inertia? What is behind the notion of “virtual” particles? Why and how do particles exert forces on one another? Not least: What are forces anyway? These are some of the central questions that have intriguing answers in Quantum Field Theory and the Standard Model of Particle Physics. Unfortunately, these theories are highly mathematical, so that most people - even many scientists - are not able to fully grasp their meaning. This book unravels these theories in a conceptual manner, using more than 180 figures and extensive explanations and will provide the nonspecialist with great insights that are not to be found in the popular science literature.
Publisher: Springer
ISBN: 3030128784
Category : Science
Languages : en
Pages : 322
Book Description
How can fundamental particles exist as waves in the vacuum? How can such waves have particle properties such as inertia? What is behind the notion of “virtual” particles? Why and how do particles exert forces on one another? Not least: What are forces anyway? These are some of the central questions that have intriguing answers in Quantum Field Theory and the Standard Model of Particle Physics. Unfortunately, these theories are highly mathematical, so that most people - even many scientists - are not able to fully grasp their meaning. This book unravels these theories in a conceptual manner, using more than 180 figures and extensive explanations and will provide the nonspecialist with great insights that are not to be found in the popular science literature.
Elementary Particle Physics
Author: John Iliopoulos
Publisher: Oxford University Press
ISBN: 0192658166
Category : Science
Languages : en
Pages : 522
Book Description
Since the development of natural philosophy in Ancient Greece, scientists have been concerned with determining the nature of matter's smallest constituents and the interactions among them. This textbook examines the question of the microscopic composition of matter through an accessible introduction to what is now called 'The Physics of Elementary Particles'. In the last few decades, elementary particle physics has undergone a period of transition, culminating in the formulation of a new theoretical scheme, known as 'The Standard Model', which has profoundly changed our understanding of nature's fundamental forces. Rooted in the experimental tradition, this new vision is based on geometry and sees the composition of matter in terms of its accordance with certain geometrical principles. This textbook presents and explains this modern viewpoint to a readership of well-motivated undergraduate students, by guiding the reader from the basics to the more advanced concepts of Gauge Symmetry, Quantum Field Theory and the phenomenon of spontaneous symmetry breaking through concrete physical examples. This engaging introduction to the theoretical advances and experimental discoveries of the last decades makes this fascinating subject accessible to undergraduate students and aims at motivating them to study it further.
Publisher: Oxford University Press
ISBN: 0192658166
Category : Science
Languages : en
Pages : 522
Book Description
Since the development of natural philosophy in Ancient Greece, scientists have been concerned with determining the nature of matter's smallest constituents and the interactions among them. This textbook examines the question of the microscopic composition of matter through an accessible introduction to what is now called 'The Physics of Elementary Particles'. In the last few decades, elementary particle physics has undergone a period of transition, culminating in the formulation of a new theoretical scheme, known as 'The Standard Model', which has profoundly changed our understanding of nature's fundamental forces. Rooted in the experimental tradition, this new vision is based on geometry and sees the composition of matter in terms of its accordance with certain geometrical principles. This textbook presents and explains this modern viewpoint to a readership of well-motivated undergraduate students, by guiding the reader from the basics to the more advanced concepts of Gauge Symmetry, Quantum Field Theory and the phenomenon of spontaneous symmetry breaking through concrete physical examples. This engaging introduction to the theoretical advances and experimental discoveries of the last decades makes this fascinating subject accessible to undergraduate students and aims at motivating them to study it further.
Elementary Particle Physics in a Nutshell
Author: Christopher G. Tully
Publisher: Princeton University Press
ISBN: 0691131163
Category : Science
Languages : en
Pages : 317
Book Description
The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. Suitable for first-year graduate students and advanced undergraduates, this textbook provides an introduction to the field
Publisher: Princeton University Press
ISBN: 0691131163
Category : Science
Languages : en
Pages : 317
Book Description
The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. Suitable for first-year graduate students and advanced undergraduates, this textbook provides an introduction to the field
Quantum Field Theory
Author: Mark Srednicki
Publisher: Cambridge University Press
ISBN: 1139462768
Category : Science
Languages : en
Pages : 664
Book Description
Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.
Publisher: Cambridge University Press
ISBN: 1139462768
Category : Science
Languages : en
Pages : 664
Book Description
Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.
Geometry of the Standard Model of Elementary Particles
Author: Andrzej Derdzinski
Publisher: Springer Science & Business Media
ISBN: 3642503101
Category : Science
Languages : en
Pages : 205
Book Description
The book gives an exposition of the standard model of elementary particles based on coordinate-free differential geometric foundations. It addresses students in physics and mathematics.
Publisher: Springer Science & Business Media
ISBN: 3642503101
Category : Science
Languages : en
Pages : 205
Book Description
The book gives an exposition of the standard model of elementary particles based on coordinate-free differential geometric foundations. It addresses students in physics and mathematics.
Field Theory in Elementary Particles
Author: Arnold Perlmutter
Publisher: Springer Science & Business Media
ISBN: 1461593433
Category : Science
Languages : en
Pages : 459
Book Description
We respectfully submit these proceedings of the 1982 Orbis Scientiae for your reading enjoyment. As always, the success of the conference was due to the hard work and wisdom of the moderators and dissertators. This year, in addition to the excellent overview of QCD and GUT, and the customary reports of the latest progress in theoretical and experimental particle physics, there have been discussions of new developments in astrophysics and especially of field theory and composite models. We wish also to note here that the 1981 Orbis paper by Stephen S. Pinsky on "Death of Fractional Topological Charge" was actually co-authored by William F. Palmer of Ohio State University, whose name was inadvertently omitted from the authorship, due to a series of misunderstandings. As in the past, this Orbis Scientiae 1982 was supported on a small scale by the Department of Energy, and this year as well by the National Science Foundation, on the same scale. We would like to thank Mrs. Helga S. Billings for her excellent typing for the n-th time, where n is a large number. This series of proceedings is also enhanced by Linda Scott's editorial help which includes improvements in the presentation of some of the papers.
Publisher: Springer Science & Business Media
ISBN: 1461593433
Category : Science
Languages : en
Pages : 459
Book Description
We respectfully submit these proceedings of the 1982 Orbis Scientiae for your reading enjoyment. As always, the success of the conference was due to the hard work and wisdom of the moderators and dissertators. This year, in addition to the excellent overview of QCD and GUT, and the customary reports of the latest progress in theoretical and experimental particle physics, there have been discussions of new developments in astrophysics and especially of field theory and composite models. We wish also to note here that the 1981 Orbis paper by Stephen S. Pinsky on "Death of Fractional Topological Charge" was actually co-authored by William F. Palmer of Ohio State University, whose name was inadvertently omitted from the authorship, due to a series of misunderstandings. As in the past, this Orbis Scientiae 1982 was supported on a small scale by the Department of Energy, and this year as well by the National Science Foundation, on the same scale. We would like to thank Mrs. Helga S. Billings for her excellent typing for the n-th time, where n is a large number. This series of proceedings is also enhanced by Linda Scott's editorial help which includes improvements in the presentation of some of the papers.
Particles And Quantum Fields
Author: Hagen Kleinert
Publisher: World Scientific
ISBN: 9814740926
Category : Science
Languages : en
Pages : 1628
Book Description
This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordinary perturbation theory, VPT produces uniformly convergent series which are valid from weak to strong couplings, where they describe critical phenomena.The present book develops the theory of effective actions which allow to treat quantum phenomena with classical formalism. For example, it derives the observed anomalous power laws of strongly interacting theories from an extremum of the action. Their fluctuations are not based on Gaussian distributions, as in the perturbative treatment of quantum field theories, or in asymptotically-free theories, but on deviations from the average which are much larger and which obey power-like distributions.Exactly solvable models are discussed and their physical properties are compared with those derived from general methods. In the last chapter we discuss the problem of quantizing the classical theory of gravity.
Publisher: World Scientific
ISBN: 9814740926
Category : Science
Languages : en
Pages : 1628
Book Description
This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordinary perturbation theory, VPT produces uniformly convergent series which are valid from weak to strong couplings, where they describe critical phenomena.The present book develops the theory of effective actions which allow to treat quantum phenomena with classical formalism. For example, it derives the observed anomalous power laws of strongly interacting theories from an extremum of the action. Their fluctuations are not based on Gaussian distributions, as in the perturbative treatment of quantum field theories, or in asymptotically-free theories, but on deviations from the average which are much larger and which obey power-like distributions.Exactly solvable models are discussed and their physical properties are compared with those derived from general methods. In the last chapter we discuss the problem of quantizing the classical theory of gravity.
Elementary Particle Physics
Author: Andrew J. Larkoski
Publisher: Cambridge University Press
ISBN: 1108496989
Category : Science
Languages : en
Pages : 509
Book Description
Introduces the fundamentals of particle physics with a focus on modern developments and an intuitive physical interpretation of results.
Publisher: Cambridge University Press
ISBN: 1108496989
Category : Science
Languages : en
Pages : 509
Book Description
Introduces the fundamentals of particle physics with a focus on modern developments and an intuitive physical interpretation of results.