Author: Amina Adadi
Publisher: CRC Press
ISBN: 1000968472
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can hardly be explained. This can be very problematic, especially for systems of a safety-critical nature such as transportation systems. Explainable AI (XAI) methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. FEATURES: Provides the necessary background for newcomers to the field (both academics and interested practitioners) Presents a timely snapshot of explainable and interpretable models in ITS applications Discusses ethical, societal, and legal implications of adopting XAI in the context of ITS Identifies future research directions and open problems
Explainable Artificial Intelligence for Intelligent Transportation Systems
Explainable AI for Intelligent Transportation Systems
Author: Amina Adadi
Publisher:
ISBN: 9781003324140
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
"Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can be hardly explained. This can be very problematic especially for systems of a safety-critical nature such as transportation systems. Explainable AI methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. Examining explainable AI in the field of ITS, this book has the following key features: provides the necessary background for newcomers to the field (both academics and interested partitioners). presents a timely snapshot of explainable and interpretable models in ITS applications. discusses ethical, societal, and legal implications of adopting XAI in the context of ITS. identifies future research directions and open problems"--
Publisher:
ISBN: 9781003324140
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
"Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can be hardly explained. This can be very problematic especially for systems of a safety-critical nature such as transportation systems. Explainable AI methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. Examining explainable AI in the field of ITS, this book has the following key features: provides the necessary background for newcomers to the field (both academics and interested partitioners). presents a timely snapshot of explainable and interpretable models in ITS applications. discusses ethical, societal, and legal implications of adopting XAI in the context of ITS. identifies future research directions and open problems"--
Explainable Artificial Intelligence for Intelligent Transportation Systems
Author: Loveleen Gaur
Publisher: Springer Nature
ISBN: 3031096444
Category : Computers
Languages : en
Pages : 103
Book Description
Transportation typically entails crucial “life-death” choices, delegating crucial decisions to an AI algorithm without any explanation poses a serious threat. Hence, explainability and responsible AI is crucial in the context of intelligent transportation. In Intelligence Transportation System (ITS) implementations such as traffic management systems and autonomous driving applications, AI-based control mechanisms are gaining prominence. Explainable artificial intelligence for intelligent transportation system tackling certain challenges in the field of autonomous vehicle, traffic management system, data integration and analytics and monitor the surrounding environment. The book discusses and inform researchers on explainable Intelligent Transportation system. It also discusses prospective methods and techniques for enabling the interpretability of transportation systems. The book further focuses on ethical considerations apart from technical considerations.
Publisher: Springer Nature
ISBN: 3031096444
Category : Computers
Languages : en
Pages : 103
Book Description
Transportation typically entails crucial “life-death” choices, delegating crucial decisions to an AI algorithm without any explanation poses a serious threat. Hence, explainability and responsible AI is crucial in the context of intelligent transportation. In Intelligence Transportation System (ITS) implementations such as traffic management systems and autonomous driving applications, AI-based control mechanisms are gaining prominence. Explainable artificial intelligence for intelligent transportation system tackling certain challenges in the field of autonomous vehicle, traffic management system, data integration and analytics and monitor the surrounding environment. The book discusses and inform researchers on explainable Intelligent Transportation system. It also discusses prospective methods and techniques for enabling the interpretability of transportation systems. The book further focuses on ethical considerations apart from technical considerations.
Role of Explainable Artificial Intelligence in E-Commerce
Author: Loveleen Gaur
Publisher: Springer Nature
ISBN: 3031556151
Category :
Languages : en
Pages : 141
Book Description
Publisher: Springer Nature
ISBN: 3031556151
Category :
Languages : en
Pages : 141
Book Description
Towards Ethical and Socially Responsible Explainable AI
Author: Mohammad Amir Khusru Akhtar
Publisher: Springer Nature
ISBN: 3031664892
Category :
Languages : en
Pages : 381
Book Description
Publisher: Springer Nature
ISBN: 3031664892
Category :
Languages : en
Pages : 381
Book Description
Explainable, Interpretable, and Transparent AI Systems
Author: B. K. Tripathy
Publisher: CRC Press
ISBN: 1040099939
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
Transparent Artificial Intelligence (AI) systems facilitate understanding of the decision-making process and provide opportunities in various aspects of explaining AI models. This book provides up-to-date information on the latest advancements in the field of explainable AI, which is a critical requirement of AI, Machine Learning (ML), and Deep Learning (DL) models. It provides examples, case studies, latest techniques, and applications from domains such as healthcare, finance, and network security. It also covers open-source interpretable tool kits so that practitioners can use them in their domains. Features: Presents a clear focus on the application of explainable AI systems while tackling important issues of “interpretability” and “transparency”. Reviews adept handling with respect to existing software and evaluation issues of interpretability. Provides insights into simple interpretable models such as decision trees, decision rules, and linear regression. Focuses on interpreting black box models like feature importance and accumulated local effects. Discusses capabilities of explainability and interpretability. This book is aimed at graduate students and professionals in computer engineering and networking communications.
Publisher: CRC Press
ISBN: 1040099939
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
Transparent Artificial Intelligence (AI) systems facilitate understanding of the decision-making process and provide opportunities in various aspects of explaining AI models. This book provides up-to-date information on the latest advancements in the field of explainable AI, which is a critical requirement of AI, Machine Learning (ML), and Deep Learning (DL) models. It provides examples, case studies, latest techniques, and applications from domains such as healthcare, finance, and network security. It also covers open-source interpretable tool kits so that practitioners can use them in their domains. Features: Presents a clear focus on the application of explainable AI systems while tackling important issues of “interpretability” and “transparency”. Reviews adept handling with respect to existing software and evaluation issues of interpretability. Provides insights into simple interpretable models such as decision trees, decision rules, and linear regression. Focuses on interpreting black box models like feature importance and accumulated local effects. Discusses capabilities of explainability and interpretability. This book is aimed at graduate students and professionals in computer engineering and networking communications.
Explainable Artificial Intelligence for Cyber Security
Author: Mohiuddin Ahmed
Publisher: Springer Nature
ISBN: 3030966305
Category : Computers
Languages : en
Pages : 283
Book Description
This book presents that explainable artificial intelligence (XAI) is going to replace the traditional artificial, machine learning, deep learning algorithms which work as a black box as of today. To understand the algorithms better and interpret the complex networks of these algorithms, XAI plays a vital role. In last few decades, we have embraced AI in our daily life to solve a plethora of problems, one of the notable problems is cyber security. In coming years, the traditional AI algorithms are not able to address the zero-day cyber attacks, and hence, to capitalize on the AI algorithms, it is absolutely important to focus more on XAI. Hence, this book serves as an excellent reference for those who are working in cyber security and artificial intelligence.
Publisher: Springer Nature
ISBN: 3030966305
Category : Computers
Languages : en
Pages : 283
Book Description
This book presents that explainable artificial intelligence (XAI) is going to replace the traditional artificial, machine learning, deep learning algorithms which work as a black box as of today. To understand the algorithms better and interpret the complex networks of these algorithms, XAI plays a vital role. In last few decades, we have embraced AI in our daily life to solve a plethora of problems, one of the notable problems is cyber security. In coming years, the traditional AI algorithms are not able to address the zero-day cyber attacks, and hence, to capitalize on the AI algorithms, it is absolutely important to focus more on XAI. Hence, this book serves as an excellent reference for those who are working in cyber security and artificial intelligence.
Modeling, Simulation, and Control of AI Robotics and Autonomous Systems
Author: Choudhury, Tanupriya
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 312
Book Description
The chasm between the physical capabilities of Intelligent Robotics and Autonomous Systems (IRAS) and their cognitive potential presents a formidable challenge. While these machines exhibit astonishing strength, precision, and speed, their intelligence and adaptability lag far behind. This inherent limitation obstructs the realization of autonomous systems that could reshape industries, from self-driving vehicles to industrial automation. The solution to this dilemma is unveiled within the pages of Modeling, Simulation, and Control of AI Robotics and Autonomous Systems. Find within the pages of this book answers for the cognitive deficit within IRAS. While these systems boast remarkable physical capabilities, their potential for intelligent decision-making and adaptation remains stunted, thereby bringing innovation to a halt. Solving this issue would mean the re-acceleration of multiple industries that could utilize automation to prevent humans from needing to do work that is dangerous, and could revolutionize transportation, and more.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 312
Book Description
The chasm between the physical capabilities of Intelligent Robotics and Autonomous Systems (IRAS) and their cognitive potential presents a formidable challenge. While these machines exhibit astonishing strength, precision, and speed, their intelligence and adaptability lag far behind. This inherent limitation obstructs the realization of autonomous systems that could reshape industries, from self-driving vehicles to industrial automation. The solution to this dilemma is unveiled within the pages of Modeling, Simulation, and Control of AI Robotics and Autonomous Systems. Find within the pages of this book answers for the cognitive deficit within IRAS. While these systems boast remarkable physical capabilities, their potential for intelligent decision-making and adaptation remains stunted, thereby bringing innovation to a halt. Solving this issue would mean the re-acceleration of multiple industries that could utilize automation to prevent humans from needing to do work that is dangerous, and could revolutionize transportation, and more.
Advances in Explainable AI Applications for Smart Cities
Author: Ghonge, Mangesh M.
Publisher: IGI Global
ISBN: 1668463636
Category : Computers
Languages : en
Pages : 523
Book Description
As smart cities become more prevalent, the need for explainable AI (XAI) applications has become increasingly important. Advances in Explainable AI Applications for Smart Cities is a co-edited book that showcases the latest research and development in XAI for smart city applications. This book covers a wide range of topics, including medical diagnosis, finance and banking, judicial systems, military training, manufacturing industries, autonomous vehicles, insurance claim management, and cybersecurity solutions. Through its diverse case studies and research, this book provides valuable insights into the importance of XAI in smart city applications. This book is an essential resource for undergraduate and postgraduate students, researchers, academicians, industry professionals, and scientists working in research laboratories. It provides a comprehensive overview of XAI concepts, advantages over AI, and its applications in smart city development. By showcasing the impact of XAI on various smart city applications, the book enables readers to understand the importance of XAI in creating more sustainable and efficient smart cities. Additionally, the book addresses the open challenges and research issues related to XAI in modern smart cities, providing a roadmap for future research in this field. Overall, this book is a valuable resource for anyone interested in understanding the importance of XAI in smart city applications.
Publisher: IGI Global
ISBN: 1668463636
Category : Computers
Languages : en
Pages : 523
Book Description
As smart cities become more prevalent, the need for explainable AI (XAI) applications has become increasingly important. Advances in Explainable AI Applications for Smart Cities is a co-edited book that showcases the latest research and development in XAI for smart city applications. This book covers a wide range of topics, including medical diagnosis, finance and banking, judicial systems, military training, manufacturing industries, autonomous vehicles, insurance claim management, and cybersecurity solutions. Through its diverse case studies and research, this book provides valuable insights into the importance of XAI in smart city applications. This book is an essential resource for undergraduate and postgraduate students, researchers, academicians, industry professionals, and scientists working in research laboratories. It provides a comprehensive overview of XAI concepts, advantages over AI, and its applications in smart city development. By showcasing the impact of XAI on various smart city applications, the book enables readers to understand the importance of XAI in creating more sustainable and efficient smart cities. Additionally, the book addresses the open challenges and research issues related to XAI in modern smart cities, providing a roadmap for future research in this field. Overall, this book is a valuable resource for anyone interested in understanding the importance of XAI in smart city applications.
Explainable Artificial Intelligence for Autonomous Vehicles
Author: Kamal Malik
Publisher: CRC Press
ISBN: 1040099297
Category : Computers
Languages : en
Pages : 205
Book Description
Explainable AI for Autonomous Vehicles: Concepts, Challenges, and Applications is a comprehensive guide to developing and applying explainable artificial intelligence (XAI) in the context of autonomous vehicles. It begins with an introduction to XAI and its importance in developing autonomous vehicles. It also provides an overview of the challenges and limitations of traditional black-box AI models and how XAI can help address these challenges by providing transparency and interpretability in the decision-making process of autonomous vehicles. The book then covers the state-of-the-art techniques and methods for XAI in autonomous vehicles, including model-agnostic approaches, post-hoc explanations, and local and global interpretability techniques. It also discusses the challenges and applications of XAI in autonomous vehicles, such as enhancing safety and reliability, improving user trust and acceptance, and enhancing overall system performance. Ethical and social considerations are also addressed in the book, such as the impact of XAI on user privacy and autonomy and the potential for bias and discrimination in XAI-based systems. Furthermore, the book provides insights into future directions and emerging trends in XAI for autonomous vehicles, such as integrating XAI with other advanced technologies like machine learning and blockchain and the potential for XAI to enable new applications and services in the autonomous vehicle industry. Overall, the book aims to provide a comprehensive understanding of XAI and its applications in autonomous vehicles to help readers develop effective XAI solutions that can enhance autonomous vehicle systems' safety, reliability, and performance while improving user trust and acceptance. This book: Discusses authentication mechanisms for camera access, encryption protocols for data protection, and access control measures for camera systems. Showcases challenges such as integration with existing systems, privacy, and security concerns while implementing explainable artificial intelligence in autonomous vehicles. Covers explainable artificial intelligence for resource management, optimization, adaptive control, and decision-making. Explains important topics such as vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, remote monitoring, and control. Emphasizes enhancing safety, reliability, overall system performance, and improving user trust in autonomous vehicles. The book is intended to provide researchers, engineers, and practitioners with a comprehensive understanding of XAI's key concepts, challenges, and applications in the context of autonomous vehicles. It is primarily written for senior undergraduate, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer science and engineering, information technology, and automotive engineering.
Publisher: CRC Press
ISBN: 1040099297
Category : Computers
Languages : en
Pages : 205
Book Description
Explainable AI for Autonomous Vehicles: Concepts, Challenges, and Applications is a comprehensive guide to developing and applying explainable artificial intelligence (XAI) in the context of autonomous vehicles. It begins with an introduction to XAI and its importance in developing autonomous vehicles. It also provides an overview of the challenges and limitations of traditional black-box AI models and how XAI can help address these challenges by providing transparency and interpretability in the decision-making process of autonomous vehicles. The book then covers the state-of-the-art techniques and methods for XAI in autonomous vehicles, including model-agnostic approaches, post-hoc explanations, and local and global interpretability techniques. It also discusses the challenges and applications of XAI in autonomous vehicles, such as enhancing safety and reliability, improving user trust and acceptance, and enhancing overall system performance. Ethical and social considerations are also addressed in the book, such as the impact of XAI on user privacy and autonomy and the potential for bias and discrimination in XAI-based systems. Furthermore, the book provides insights into future directions and emerging trends in XAI for autonomous vehicles, such as integrating XAI with other advanced technologies like machine learning and blockchain and the potential for XAI to enable new applications and services in the autonomous vehicle industry. Overall, the book aims to provide a comprehensive understanding of XAI and its applications in autonomous vehicles to help readers develop effective XAI solutions that can enhance autonomous vehicle systems' safety, reliability, and performance while improving user trust and acceptance. This book: Discusses authentication mechanisms for camera access, encryption protocols for data protection, and access control measures for camera systems. Showcases challenges such as integration with existing systems, privacy, and security concerns while implementing explainable artificial intelligence in autonomous vehicles. Covers explainable artificial intelligence for resource management, optimization, adaptive control, and decision-making. Explains important topics such as vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, remote monitoring, and control. Emphasizes enhancing safety, reliability, overall system performance, and improving user trust in autonomous vehicles. The book is intended to provide researchers, engineers, and practitioners with a comprehensive understanding of XAI's key concepts, challenges, and applications in the context of autonomous vehicles. It is primarily written for senior undergraduate, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer science and engineering, information technology, and automotive engineering.