Experimental Measurements of Rf Breakdowns and Deflecting Gradients in Mm-wave Metallic Accelerating Structures

Experimental Measurements of Rf Breakdowns and Deflecting Gradients in Mm-wave Metallic Accelerating Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this study, we present an experimental study of a high gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.

Experimental Measurements of Rf Breakdowns and Deflecting Gradients in Mm-wave Metallic Accelerating Structures

Experimental Measurements of Rf Breakdowns and Deflecting Gradients in Mm-wave Metallic Accelerating Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this study, we present an experimental study of a high gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.

Rf Breakdown Tests of Mm-wave Metallic Accelerating Structures

Rf Breakdown Tests of Mm-wave Metallic Accelerating Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Here, we are exploring the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wave structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV/m with a peak surface electric field of 1.5 GV/m and a pulse length of about 2.4 ns.

Rf Breakdown Measurements in Electron Beam Driven 200 GHz Copper and Copper-silver Accelerating Structures

Rf Breakdown Measurements in Electron Beam Driven 200 GHz Copper and Copper-silver Accelerating Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10-2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.

Investigations on rf breakdown phenomenon in high gradient accelerating structures

Investigations on rf breakdown phenomenon in high gradient accelerating structures PDF Author: Jiahang Shao
Publisher: Springer
ISBN: 9811079269
Category : Science
Languages : en
Pages : 142

Get Book Here

Book Description
This book mainly focuses on the experimental research of rf breakdown and field emission with novel methods, including triggering rf breakdown with high intensity laser and pin-shaped cathodes as well as locating field emitters with a high resolution in-situ imaging system. With these methods, this book has analyzed the power flow between cells during rf breakdown, observed the evolution of field emission during rf conditioning and the dependence of field emission on stored energy, and studied the field emitter distribution and origination. The research findings greatly expand the understanding of rf breakdown and field emission, which will in turn benefit future study into electron sources, particle accelerators, and high gradient rf devices in general.

Diagnostics of RF Breakdowns in High-Gradient Accelerating Structures

Diagnostics of RF Breakdowns in High-Gradient Accelerating Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Get Book Here

Book Description


Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures

Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures PDF Author: Alexander Cahill
Publisher:
ISBN:
Category :
Languages : en
Pages : 221

Get Book Here

Book Description
Normal conducting radio-frequency (rf) particle accelerators have many applications, including colliders for high energy physics, high-intensity synchrotron light sources, non-destructive testing for security, and medical radiation therapy. In these applications, the accelerating gradient is an important parameter. Specifically for high energy physics, increasing the accelerating gradient extends the potential energy reach and is viewed as a way to mitigate their considerable cost. Furthermore, a gradient increase will enable for more compact and thus accessible free electron lasers (FELs). The major factor limiting larger accelerating gradients is vacuum rf breakdown. Basic physics of this phenomenon has been extensively studied over the last few decades. During which, the occurrence of rf breakdowns was shown to be probabilistic, and can be characterized by a breakdown rate. The current consensus is that vacuum rf breakdowns are caused by movements of crystal defects induced by periodic mechanical stress. The stress may be caused by pulsed surface heating and large electric fields. A compelling piece of evidence that supports this hypothesis is that accelerating structures constructed from harder materials exhibit larger accelerating gradients for similar breakdown rates. One possible method to increase sustained electric fields in copper cavities is to cool them to temperatures below 77~K, where the rf surface resistance and coefficient of thermal expansion decrease, while the yield strength (which correlates with hardness) and thermal conductivity increase. These changes in material properties at low temperature increases metal hardness and decreases the mechanical stress from exposure to rf electromagnetic fields. To test the validity of the improvement in breakdown rate, experiments were conducted with cryogenic accelerating cavities in the Accelerator Structure Test Area (ASTA) at SLAC National Accelerator Laboratory. A short 11.4~GHz standing wave accelerating structure was conditioned to an accelerating gradient of 250~MV/m at 45~K with $10^8$ rf pulses. At gradients greater than 150~MV/m I observed a degradation in the intrinsic quality factor of the cavity, $Q_0$. I developed a model for the change in $Q_0$ using measured field emission currents and rf signals. I found that the $Q_0$ degradation is consistent with the rf power being absorbed by strong field emission currents accelerated inside the cavity. I measured rf breakdown rates for 45~K and found $2*10^{-4}/pulse/meter$ when accounting for any change in $Q_0$. These are the largest accelerating gradients for a structure with similar breakdown rates. The final chapter presents the design of an rf photoinjector electron source that uses the cryogenic normal conducting accelerator technology: the TOPGUN. With this cryogenic rf photoinjector, the beam brightness will increase by over an order of a magnitude when compared to the current photoinjector for the Linac Coherent Light Source (LCLS). When using the TOPGUN as the source for an X-ray Free Electron Laser, the higher brightness would allow for a decrease in the required length of the LCLS undulator by more than a factor of two.

Acoustic Measurements of RF Breakdown in High Gradient RF Structures

Acoustic Measurements of RF Breakdown in High Gradient RF Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The authors are developing techniques for processing the high gradient (75MV/m) X-band accelerating structures for the NLC. Accelerometers attached to the structures detect surprisingly large acoustic signals believed to be due to RF heating. On a pulse that causes breakdown, these signals increase substantially, producing up to 50 G accelerations at>20KHz. The timing and amplitude of these acoustic signals can provide information on the location and mechanism of the breakdowns.

Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030908637X
Category : Science
Languages : en
Pages : 177

Get Book Here

Book Description
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

Fundamentals of Electric Propulsion

Fundamentals of Electric Propulsion PDF Author: Dan M. Goebel
Publisher: John Wiley & Sons
ISBN: 0470436263
Category : Technology & Engineering
Languages : en
Pages : 528

Get Book Here

Book Description
Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.

Advanced Modal Analysis

Advanced Modal Analysis PDF Author: Giuseppe Conciauro
Publisher: John Wiley & Sons
ISBN:
Category : Computers
Languages : en
Pages : 368

Get Book Here

Book Description
Single mode equivalent network representations have been a key tool for the industrial design and development of a large variety of microwave systems. The reduced dimensions and increased complexity of modern microwave equipment, however, makes the inclusion of the higher order mode interactions essential for the correct industrial design and optimization of all microwave hardware. In this context, the analytical techniques originally exploited to develop single mode networks have recently been extended to produce multi-mode algorithms that can form the basis of fast and accurate Computer Aided Design tools. Furthermore, alternative multi-modal techniques, involving resonant rather than guided modes, have recently been developed for the design of waveguide components of arbitrary shape. This book describes in detail a number of modern multi-modal techniques for the analysis and design of passive microwave components. The authors comprehensively cover modal analysis of waveguides and cavities; discuss several multi-mode procedures for the study of both basic and arbitrarily shaped waveguide junctions and, finally, describe specific applications such as inductively coupled filters, waveguide couplers, metal insert and dual-mode filters. The book will be of interest to professional engineers and researchers in the microwave engineering field as well as students engaged in research at an advanced level. Distinctive features of this book include: * detailed explanation of several multi-mode analysis techniques for the analysis of waveguide components based on both canonical and arbitrary waveguide profiles * measured versus simulated results for a number of specific application examples * accompanying software that allows the reader to input their own data thereby demonstrating how the techniques described can be effectively used to develop fast and accurate CAD tools.