Author: Jane Hawkins
Publisher: Springer Nature
ISBN: 3030592421
Category : Mathematics
Languages : en
Pages : 340
Book Description
This textbook provides a broad introduction to the fields of dynamical systems and ergodic theory. Motivated by examples throughout, the author offers readers an approachable entry-point to the dynamics of ergodic systems. Modern and classical applications complement the theory on topics ranging from financial fraud to virus dynamics, offering numerous avenues for further inquiry. Starting with several simple examples of dynamical systems, the book begins by establishing the basics of measurable dynamical systems, attractors, and the ergodic theorems. From here, chapters are modular and can be selected according to interest. Highlights include the Perron–Frobenius theorem, which is presented with proof and applications that include Google PageRank. An in-depth exploration of invariant measures includes ratio sets and type III measurable dynamical systems using the von Neumann factor classification. Topological and measure theoretic entropy are illustrated and compared in detail, with an algorithmic application of entropy used to study the papillomavirus genome. A chapter on complex dynamics introduces Julia sets and proves their ergodicity for certain maps. Cellular automata are explored as a series of case studies in one and two dimensions, including Conway’s Game of Life and latent infections of HIV. Other chapters discuss mixing properties, shift spaces, and toral automorphisms. Ergodic Dynamics unifies topics across ergodic theory, topological dynamics, complex dynamics, and dynamical systems, offering an accessible introduction to the area. Readers across pure and applied mathematics will appreciate the rich illustration of the theory through examples, real-world connections, and vivid color graphics. A solid grounding in measure theory, topology, and complex analysis is assumed; appendices provide a brief review of the essentials from measure theory, functional analysis, and probability.
Ergodic Dynamics
Author: Jane Hawkins
Publisher: Springer Nature
ISBN: 3030592421
Category : Mathematics
Languages : en
Pages : 340
Book Description
This textbook provides a broad introduction to the fields of dynamical systems and ergodic theory. Motivated by examples throughout, the author offers readers an approachable entry-point to the dynamics of ergodic systems. Modern and classical applications complement the theory on topics ranging from financial fraud to virus dynamics, offering numerous avenues for further inquiry. Starting with several simple examples of dynamical systems, the book begins by establishing the basics of measurable dynamical systems, attractors, and the ergodic theorems. From here, chapters are modular and can be selected according to interest. Highlights include the Perron–Frobenius theorem, which is presented with proof and applications that include Google PageRank. An in-depth exploration of invariant measures includes ratio sets and type III measurable dynamical systems using the von Neumann factor classification. Topological and measure theoretic entropy are illustrated and compared in detail, with an algorithmic application of entropy used to study the papillomavirus genome. A chapter on complex dynamics introduces Julia sets and proves their ergodicity for certain maps. Cellular automata are explored as a series of case studies in one and two dimensions, including Conway’s Game of Life and latent infections of HIV. Other chapters discuss mixing properties, shift spaces, and toral automorphisms. Ergodic Dynamics unifies topics across ergodic theory, topological dynamics, complex dynamics, and dynamical systems, offering an accessible introduction to the area. Readers across pure and applied mathematics will appreciate the rich illustration of the theory through examples, real-world connections, and vivid color graphics. A solid grounding in measure theory, topology, and complex analysis is assumed; appendices provide a brief review of the essentials from measure theory, functional analysis, and probability.
Publisher: Springer Nature
ISBN: 3030592421
Category : Mathematics
Languages : en
Pages : 340
Book Description
This textbook provides a broad introduction to the fields of dynamical systems and ergodic theory. Motivated by examples throughout, the author offers readers an approachable entry-point to the dynamics of ergodic systems. Modern and classical applications complement the theory on topics ranging from financial fraud to virus dynamics, offering numerous avenues for further inquiry. Starting with several simple examples of dynamical systems, the book begins by establishing the basics of measurable dynamical systems, attractors, and the ergodic theorems. From here, chapters are modular and can be selected according to interest. Highlights include the Perron–Frobenius theorem, which is presented with proof and applications that include Google PageRank. An in-depth exploration of invariant measures includes ratio sets and type III measurable dynamical systems using the von Neumann factor classification. Topological and measure theoretic entropy are illustrated and compared in detail, with an algorithmic application of entropy used to study the papillomavirus genome. A chapter on complex dynamics introduces Julia sets and proves their ergodicity for certain maps. Cellular automata are explored as a series of case studies in one and two dimensions, including Conway’s Game of Life and latent infections of HIV. Other chapters discuss mixing properties, shift spaces, and toral automorphisms. Ergodic Dynamics unifies topics across ergodic theory, topological dynamics, complex dynamics, and dynamical systems, offering an accessible introduction to the area. Readers across pure and applied mathematics will appreciate the rich illustration of the theory through examples, real-world connections, and vivid color graphics. A solid grounding in measure theory, topology, and complex analysis is assumed; appendices provide a brief review of the essentials from measure theory, functional analysis, and probability.
Ergodic Theory and Differentiable Dynamics
Author: Ricardo Mañé
Publisher: Springer Science & Business Media
ISBN: 9783540152781
Category : Entropia
Languages : en
Pages : 317
Book Description
This version differs from the Portuguese edition only in a few additions and many minor corrections. Naturally, this edition raised the question of whether to use the opportunity to introduce major additions. In a book like this, ending in the heart of a rich research field, there are always further topics that should arguably be included. Subjects like geodesic flows or the role of Hausdorff dimension in con temporary ergodic theory are two of the most tempting gaps to fill. However, I let it stand with practically the same boundaries as the original version, still believing these adequately fulfill its goal of presenting the basic knowledge required to approach the research area of Differentiable Ergodic Theory. I wish to thank Dr. Levy for the excellent translation and several of the correc tions mentioned above. Rio de Janeiro, January 1987 Ricardo Mane Introduction This book is an introduction to ergodic theory, with emphasis on its relationship with the theory of differentiable dynamical systems, which is sometimes called differentiable ergodic theory. Chapter 0, a quick review of measure theory, is included as a reference. Proofs are omitted, except for some results on derivatives with respect to sequences of partitions, which are not generally found in standard texts on measure and integration theory and tend to be lost within a much wider framework in more advanced texts.
Publisher: Springer Science & Business Media
ISBN: 9783540152781
Category : Entropia
Languages : en
Pages : 317
Book Description
This version differs from the Portuguese edition only in a few additions and many minor corrections. Naturally, this edition raised the question of whether to use the opportunity to introduce major additions. In a book like this, ending in the heart of a rich research field, there are always further topics that should arguably be included. Subjects like geodesic flows or the role of Hausdorff dimension in con temporary ergodic theory are two of the most tempting gaps to fill. However, I let it stand with practically the same boundaries as the original version, still believing these adequately fulfill its goal of presenting the basic knowledge required to approach the research area of Differentiable Ergodic Theory. I wish to thank Dr. Levy for the excellent translation and several of the correc tions mentioned above. Rio de Janeiro, January 1987 Ricardo Mane Introduction This book is an introduction to ergodic theory, with emphasis on its relationship with the theory of differentiable dynamical systems, which is sometimes called differentiable ergodic theory. Chapter 0, a quick review of measure theory, is included as a reference. Proofs are omitted, except for some results on derivatives with respect to sequences of partitions, which are not generally found in standard texts on measure and integration theory and tend to be lost within a much wider framework in more advanced texts.
Ergodic Theory and Dynamical Systems
Author: Yves Coudène
Publisher: Springer
ISBN: 1447172876
Category : Mathematics
Languages : en
Pages : 192
Book Description
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of comments for the more advanced reader.
Publisher: Springer
ISBN: 1447172876
Category : Mathematics
Languages : en
Pages : 192
Book Description
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of comments for the more advanced reader.
Ergodic Theory
Author: Manfred Einsiedler
Publisher: Springer Science & Business Media
ISBN: 0857290215
Category : Mathematics
Languages : en
Pages : 486
Book Description
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
Publisher: Springer Science & Business Media
ISBN: 0857290215
Category : Mathematics
Languages : en
Pages : 486
Book Description
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces
Author: M. Bachir Bekka
Publisher: Cambridge University Press
ISBN: 9780521660303
Category : Mathematics
Languages : en
Pages : 214
Book Description
This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.
Publisher: Cambridge University Press
ISBN: 9780521660303
Category : Mathematics
Languages : en
Pages : 214
Book Description
This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.
Fundamentals of Measurable Dynamics
Author: Daniel J. Rudolph
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 190
Book Description
This book is designed to provide graduate students and other researchers in dynamical systems theory with an introduction to the ergodic theory of Lebesgue spaces. The author's aim is to present a technically complete account which offers an in-depth understanding of the techniques of the field, both classical and modern. Thus, the basic structure theorems of Lebesgue spaces are given in detail as well as complete accounts of the ergodic theory of a single transformation, ergodic theorems, mixing properties and entropy. Subsequent chapters extend the earlier material to the areas of joinings and representation theorems, in particular the theorems of Ornstein and Krieger. Prerequisites are a working knowledge of Lebesgue measure and the topology of the real line as might be gained from the first year of a graduate course. Many exercises and examples are included to illustrate and to further cement the reader's understanding of the material. The result is a text which will furnish the reader with a sound technical background from the foundations of the subject to some of its most recent developments.
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 190
Book Description
This book is designed to provide graduate students and other researchers in dynamical systems theory with an introduction to the ergodic theory of Lebesgue spaces. The author's aim is to present a technically complete account which offers an in-depth understanding of the techniques of the field, both classical and modern. Thus, the basic structure theorems of Lebesgue spaces are given in detail as well as complete accounts of the ergodic theory of a single transformation, ergodic theorems, mixing properties and entropy. Subsequent chapters extend the earlier material to the areas of joinings and representation theorems, in particular the theorems of Ornstein and Krieger. Prerequisites are a working knowledge of Lebesgue measure and the topology of the real line as might be gained from the first year of a graduate course. Many exercises and examples are included to illustrate and to further cement the reader's understanding of the material. The result is a text which will furnish the reader with a sound technical background from the foundations of the subject to some of its most recent developments.
Ergodic Theory, Hyperbolic Dynamics and Dimension Theory
Author: Luís Barreira
Publisher: Springer Science & Business Media
ISBN: 3642280900
Category : Mathematics
Languages : en
Pages : 295
Book Description
Over the last two decades, the dimension theory of dynamical systems has progressively developed into an independent and extremely active field of research. The main aim of this volume is to offer a unified, self-contained introduction to the interplay of these three main areas of research: ergodic theory, hyperbolic dynamics, and dimension theory. It starts with the basic notions of the first two topics and ends with a sufficiently high-level introduction to the third. Furthermore, it includes an introduction to the thermodynamic formalism, which is an important tool in dimension theory. The volume is primarily intended for graduate students interested in dynamical systems, as well as researchers in other areas who wish to learn about ergodic theory, thermodynamic formalism, or dimension theory of hyperbolic dynamics at an intermediate level in a sufficiently detailed manner. In particular, it can be used as a basis for graduate courses on any of these three subjects. The text can also be used for self-study: it is self-contained, and with the exception of some well-known basic facts from other areas, all statements include detailed proofs.
Publisher: Springer Science & Business Media
ISBN: 3642280900
Category : Mathematics
Languages : en
Pages : 295
Book Description
Over the last two decades, the dimension theory of dynamical systems has progressively developed into an independent and extremely active field of research. The main aim of this volume is to offer a unified, self-contained introduction to the interplay of these three main areas of research: ergodic theory, hyperbolic dynamics, and dimension theory. It starts with the basic notions of the first two topics and ends with a sufficiently high-level introduction to the third. Furthermore, it includes an introduction to the thermodynamic formalism, which is an important tool in dimension theory. The volume is primarily intended for graduate students interested in dynamical systems, as well as researchers in other areas who wish to learn about ergodic theory, thermodynamic formalism, or dimension theory of hyperbolic dynamics at an intermediate level in a sufficiently detailed manner. In particular, it can be used as a basis for graduate courses on any of these three subjects. The text can also be used for self-study: it is self-contained, and with the exception of some well-known basic facts from other areas, all statements include detailed proofs.
Ergodic Theory and Topological Dynamics
Author:
Publisher: Academic Press
ISBN: 0080873863
Category : Mathematics
Languages : en
Pages : 201
Book Description
Ergodic Theory and Topological Dynamics
Publisher: Academic Press
ISBN: 0080873863
Category : Mathematics
Languages : en
Pages : 201
Book Description
Ergodic Theory and Topological Dynamics
Aspects of Ergodic, Qualitative and Statistical Theory of Motion
Author: Giovanni Gallavotti
Publisher: Springer Science & Business Media
ISBN: 9783540408796
Category : Mathematics
Languages : en
Pages : 456
Book Description
Intended for beginners in ergodic theory, this introductory textbook addresses students as well as researchers in mathematical physics. The main novelty is the systematic treatment of characteristic problems in ergodic theory by a unified method in terms of convergent power series and renormalization group methods, in particular. Basic concepts of ergodicity, like Gibbs states, are developed and applied to, e.g., Asonov systems or KAM Theroy. Many examples illustrate the ideas and, in addition, a substantial number of interesting topics are treated in the form of guided problems.
Publisher: Springer Science & Business Media
ISBN: 9783540408796
Category : Mathematics
Languages : en
Pages : 456
Book Description
Intended for beginners in ergodic theory, this introductory textbook addresses students as well as researchers in mathematical physics. The main novelty is the systematic treatment of characteristic problems in ergodic theory by a unified method in terms of convergent power series and renormalization group methods, in particular. Basic concepts of ergodicity, like Gibbs states, are developed and applied to, e.g., Asonov systems or KAM Theroy. Many examples illustrate the ideas and, in addition, a substantial number of interesting topics are treated in the form of guided problems.
Combinatorial Constructions in Ergodic Theory and Dynamics
Author: A. B. Katok
Publisher: American Mathematical Soc.
ISBN: 0821834967
Category : Mathematics
Languages : en
Pages : 127
Book Description
Ergodic theory studies measure-preserving transformations of measure spaces. These objects are intrinsically infinite, and the notion of an individual point or of an orbit makes no sense. Still there are a variety of situations when a measure preserving transformation (and its asymptotic behavior) can be well described as a limit of certain finite objects (periodic processes). The first part of this book develops this idea systematically. Genericity of approximation in various categories is explored, and numerous applications are presented, including spectral multiplicity and properties of the maximal spectral type. The second part of the book contains a treatment of various constructions of cohomological nature with an emphasis on obtaining interesting asymptotic behavior from approximate pictures at different time scales. The book presents a view of ergodic theory not found in other expository sources. It is suitable for graduate students familiar with measure theory and basic functional analysis.
Publisher: American Mathematical Soc.
ISBN: 0821834967
Category : Mathematics
Languages : en
Pages : 127
Book Description
Ergodic theory studies measure-preserving transformations of measure spaces. These objects are intrinsically infinite, and the notion of an individual point or of an orbit makes no sense. Still there are a variety of situations when a measure preserving transformation (and its asymptotic behavior) can be well described as a limit of certain finite objects (periodic processes). The first part of this book develops this idea systematically. Genericity of approximation in various categories is explored, and numerous applications are presented, including spectral multiplicity and properties of the maximal spectral type. The second part of the book contains a treatment of various constructions of cohomological nature with an emphasis on obtaining interesting asymptotic behavior from approximate pictures at different time scales. The book presents a view of ergodic theory not found in other expository sources. It is suitable for graduate students familiar with measure theory and basic functional analysis.