Author: F G Bell
Publisher: Elsevier
ISBN: 1483105199
Category : Technology & Engineering
Languages : en
Pages : 593
Book Description
Engineering in Rock Masses is a 26-chapter text that deals with the behavior, investigation, and construction of rock masses. The first chapters review the properties, behavior, classification, and occurrence of groundwater in rock masses. The subsequent chapters discuss the stress analysis, exploration, laboratory testing, geophysical methods, and instrumentation in these materials. These topics are followed by discussions of slope stability, rockfall problems, settlement and bearing capacity, subsidence, and seismic movements of rocks and rock masses. This work also evaluates the role of pumping system, ground freezing, grouting, rock anchors, drilling, blasting, and open excavation. The remaining chapters look into the rock masses’ tunneling, underground chambers, shafts, socketed foundations, and retaining structures. This book will be of great value to practicing civil and mining engineers, engineering geologists, and researchers.
Engineering in Rock Masses
Engineering Rock Mass Classification
Author: R K Goel
Publisher: Elsevier
ISBN: 0123858798
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
Rock mass classification methods are commonly used at the preliminary design stages of a construction project when there is very little information. It forms the bases for design and estimation of the required amount and type of rock support and groundwater control measures. Encompassing nearly all aspects of rock mass classifications in detail, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers and managers with extensive practical knowledge which is time-tested in the projects in Himalaya and other parts of the world in complex geological conditions. Rock mass classification is an essential element of feasibility studies for any near surface construction project prior to any excavation or disturbances made to earth. Written by an author team with over 50 years of experience in some of the most difficult mining regions of the world, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers, construction managers and mining engineers with the tools and methods to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. The goal is to use effective mapping techniques to obtain data can be used as input for any of the established rock classification systems. The book covers all of the commonly used classification methods including: Barton's Q and Q' systems, Bieniawski's RMR, Laubscher's MRMR and Hoek's and GSI systems. With this book in hand, engineers will be able to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. Rich with international case studies and worked out equations, the focus of the book is on the practical gathering information for purposes of analysis and design. - Identify the most significant parameters influencing the behaviour of a rock mass - Divide a particular rock mass formulation into groups of similar behaviour, rock mass classes of varying quality - Provide a basis of understanding the characteristics of each rock mass class - Relate the experience of rock conditions at one site to the conditions and experience encountered at others - Derive quantitative data and guidelines for engineering design - Provide common basis for communication between engineers and geologists
Publisher: Elsevier
ISBN: 0123858798
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
Rock mass classification methods are commonly used at the preliminary design stages of a construction project when there is very little information. It forms the bases for design and estimation of the required amount and type of rock support and groundwater control measures. Encompassing nearly all aspects of rock mass classifications in detail, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers and managers with extensive practical knowledge which is time-tested in the projects in Himalaya and other parts of the world in complex geological conditions. Rock mass classification is an essential element of feasibility studies for any near surface construction project prior to any excavation or disturbances made to earth. Written by an author team with over 50 years of experience in some of the most difficult mining regions of the world, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers, construction managers and mining engineers with the tools and methods to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. The goal is to use effective mapping techniques to obtain data can be used as input for any of the established rock classification systems. The book covers all of the commonly used classification methods including: Barton's Q and Q' systems, Bieniawski's RMR, Laubscher's MRMR and Hoek's and GSI systems. With this book in hand, engineers will be able to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. Rich with international case studies and worked out equations, the focus of the book is on the practical gathering information for purposes of analysis and design. - Identify the most significant parameters influencing the behaviour of a rock mass - Divide a particular rock mass formulation into groups of similar behaviour, rock mass classes of varying quality - Provide a basis of understanding the characteristics of each rock mass class - Relate the experience of rock conditions at one site to the conditions and experience encountered at others - Derive quantitative data and guidelines for engineering design - Provide common basis for communication between engineers and geologists
Rock Engineering and Rock Mechanics: Structures in and on Rock Masses
Author: R. Alejano
Publisher: CRC Press
ISBN: 1315749521
Category : Technology & Engineering
Languages : en
Pages : 1560
Book Description
Rock Engineering and Rock Mechanics: Structures in and on Rock Masses covers the most important topics and state-of-the-art in the area of rock mechanics, with an emphasis on structures in and on rock masses. The 255 contributions (including 6 keynote lectures) from the 2014 ISRM European Rock Mechanics Symposium (EUROCK 2014, Vigo, Spain, 27-29 Ma
Publisher: CRC Press
ISBN: 1315749521
Category : Technology & Engineering
Languages : en
Pages : 1560
Book Description
Rock Engineering and Rock Mechanics: Structures in and on Rock Masses covers the most important topics and state-of-the-art in the area of rock mechanics, with an emphasis on structures in and on rock masses. The 255 contributions (including 6 keynote lectures) from the 2014 ISRM European Rock Mechanics Symposium (EUROCK 2014, Vigo, Spain, 27-29 Ma
Engineering Rock Mass Classifications
Author: Z. T. Bieniawski
Publisher: John Wiley & Sons
ISBN: 9780471601722
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
This is the first authoritative reference on rock mass classification, consolidating into one handy source information once widely scattered throughout the literature. It includes new, previously unpublished material and case histories, presents the fundamental concepts of classification schemes, and critically appraises their practical application in industrial projects such as tunneling and mining.
Publisher: John Wiley & Sons
ISBN: 9780471601722
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
This is the first authoritative reference on rock mass classification, consolidating into one handy source information once widely scattered throughout the literature. It includes new, previously unpublished material and case histories, presents the fundamental concepts of classification schemes, and critically appraises their practical application in industrial projects such as tunneling and mining.
Engineering Properties of Rocks
Author: Lianyang Zhang
Publisher: Butterworth-Heinemann
ISBN: 0128028769
Category : Science
Languages : en
Pages : 396
Book Description
More often than not, it is difficult or even impossible to obtain directly the specific rock parameters of interest using in situ methods. The procedures for measuring most rock properties are also time consuming and expensive. Engineering Properties of Rocks, Second Edition, explores the use of typical values and/or empirical correlations of similar rocks to determine the specific parameters needed. The book is based on the author's extensive experience and offers a single source of information for the evaluation of rock properties. It systematically describes the classification and characterization of intact rock, rock discontinuities, and rock masses, and presents the various indirect methods for estimating the deformability, strength, and permeability of these components as well as the in situ rock stresses. - Presents a single source for the correlations on rock properties - Saves time and resources invested on in situ testing procedures - Fully updated with current literature - Expanded coverage of rock types and geographical locations
Publisher: Butterworth-Heinemann
ISBN: 0128028769
Category : Science
Languages : en
Pages : 396
Book Description
More often than not, it is difficult or even impossible to obtain directly the specific rock parameters of interest using in situ methods. The procedures for measuring most rock properties are also time consuming and expensive. Engineering Properties of Rocks, Second Edition, explores the use of typical values and/or empirical correlations of similar rocks to determine the specific parameters needed. The book is based on the author's extensive experience and offers a single source of information for the evaluation of rock properties. It systematically describes the classification and characterization of intact rock, rock discontinuities, and rock masses, and presents the various indirect methods for estimating the deformability, strength, and permeability of these components as well as the in situ rock stresses. - Presents a single source for the correlations on rock properties - Saves time and resources invested on in situ testing procedures - Fully updated with current literature - Expanded coverage of rock types and geographical locations
Engineering Rock Mechanics
Author: John A Hudson
Publisher: Elsevier
ISBN: 0080530966
Category : Technology & Engineering
Languages : en
Pages : 457
Book Description
Engineering rock mechanics is the discipline used to design structures built in rock. These structures encompass building foundations, dams, slopes, shafts, tunnels, caverns, hydroelectric schemes, mines, radioactive waste repositories and geothermal energy projects: in short, any structure built on or in a rock mass. Despite the variety of projects that use rock engineering, the principles remain the same. Engineering Rock Mechanics clearly and systematically explains the key principles behind rock engineering. The book covers the basic rock mechanics principles; how to study the interactions between these principles and a discussion on the fundamentals of excavation and support and the application of these in the design of surface and underground structures. Engineering Rock Mechanics is recommended as an across-the-board source of information for the benefit of anyone involved in rock mechanics and rock engineering.
Publisher: Elsevier
ISBN: 0080530966
Category : Technology & Engineering
Languages : en
Pages : 457
Book Description
Engineering rock mechanics is the discipline used to design structures built in rock. These structures encompass building foundations, dams, slopes, shafts, tunnels, caverns, hydroelectric schemes, mines, radioactive waste repositories and geothermal energy projects: in short, any structure built on or in a rock mass. Despite the variety of projects that use rock engineering, the principles remain the same. Engineering Rock Mechanics clearly and systematically explains the key principles behind rock engineering. The book covers the basic rock mechanics principles; how to study the interactions between these principles and a discussion on the fundamentals of excavation and support and the application of these in the design of surface and underground structures. Engineering Rock Mechanics is recommended as an across-the-board source of information for the benefit of anyone involved in rock mechanics and rock engineering.
Rock Mass Classification
Author: B. Singh
Publisher: Elsevier
ISBN: 0080540651
Category : Science
Languages : en
Pages : 282
Book Description
Rock Mass Classifications - A Practical Approach in Civil Engineering was written in response to the many unanswered questions regarding this subject. Questions such as - Is Classification reasonably reliable? Can it be successful in crisis management of geohazards? Can a single Classification system be general for all rock structures? Is Classification a scientific approach? Laborious field research was undertaken in the Himalayan mountains by a team of scientists from the Central Mining Research Institute (CMRI), University of Roorkee (UOR), Central Soil and Material Research Station (CSMRS), U.P. Irrigation Research Institute (UPIRI), and Norwegian Geotechnical Institute (NGI) to answer these questions. The results obtained from the research work were systematically compiled to produce this book which bears particular relevance to civil, mining and petroleum engineers and geologists. Endorsements "It is a Handbook of Rock Engineering" - Zhao Jian, School of Civil & Structural Engineering, Nanyang Technological University, Singapore "I came across your new book - Rock Mass Classification, absolutely fantastic" - Subodh K. Jain, U.S.A
Publisher: Elsevier
ISBN: 0080540651
Category : Science
Languages : en
Pages : 282
Book Description
Rock Mass Classifications - A Practical Approach in Civil Engineering was written in response to the many unanswered questions regarding this subject. Questions such as - Is Classification reasonably reliable? Can it be successful in crisis management of geohazards? Can a single Classification system be general for all rock structures? Is Classification a scientific approach? Laborious field research was undertaken in the Himalayan mountains by a team of scientists from the Central Mining Research Institute (CMRI), University of Roorkee (UOR), Central Soil and Material Research Station (CSMRS), U.P. Irrigation Research Institute (UPIRI), and Norwegian Geotechnical Institute (NGI) to answer these questions. The results obtained from the research work were systematically compiled to produce this book which bears particular relevance to civil, mining and petroleum engineers and geologists. Endorsements "It is a Handbook of Rock Engineering" - Zhao Jian, School of Civil & Structural Engineering, Nanyang Technological University, Singapore "I came across your new book - Rock Mass Classification, absolutely fantastic" - Subodh K. Jain, U.S.A
Engineering Behaviour of Rocks
Author: I.W. Farmer
Publisher: Springer Science & Business Media
ISBN: 9400959788
Category : Science
Languages : en
Pages : 265
Book Description
The first edition of this book was received more kindly than it deserved by some, and with some scepticism by others. It set out to present a simple, concise and reasonably comprehensive introduction to some of the theoretical and empirical criteria which may be used to define rock as a structural material. The objectives - reinforced by the change in title - remain the same, but the approach has been changed considerably and only one or two sections have been retained from the first edition. The particular aim in this edition is to provide a description of the mechanical behaviour of rocks, based firmly upon experimental data, which can be used to explain how rocks deform, fracture and yield, and to show how this knowledge can be used in design. The major emphasis is on the behaviour of rocks as materials, although in the later chapters the behaviour of discontinuities in rocks, and the way in of rock masses, is considered. which this can affect the behaviour If this edition is an improvement on the first edition it reflects the debt lowe to numerous people who have attempted to explain the rudiments of the subject to me. I should like to thank Peter Attewell and Roy Scott in particular. I should also like to thank Tony Price and Mike Gilbert whose work at Newcastle I have used shamelessly.
Publisher: Springer Science & Business Media
ISBN: 9400959788
Category : Science
Languages : en
Pages : 265
Book Description
The first edition of this book was received more kindly than it deserved by some, and with some scepticism by others. It set out to present a simple, concise and reasonably comprehensive introduction to some of the theoretical and empirical criteria which may be used to define rock as a structural material. The objectives - reinforced by the change in title - remain the same, but the approach has been changed considerably and only one or two sections have been retained from the first edition. The particular aim in this edition is to provide a description of the mechanical behaviour of rocks, based firmly upon experimental data, which can be used to explain how rocks deform, fracture and yield, and to show how this knowledge can be used in design. The major emphasis is on the behaviour of rocks as materials, although in the later chapters the behaviour of discontinuities in rocks, and the way in of rock masses, is considered. which this can affect the behaviour If this edition is an improvement on the first edition it reflects the debt lowe to numerous people who have attempted to explain the rudiments of the subject to me. I should like to thank Peter Attewell and Roy Scott in particular. I should also like to thank Tony Price and Mike Gilbert whose work at Newcastle I have used shamelessly.
Rock Mechanics and Engineering
Author: C. Jaeger
Publisher: Cambridge University Press
ISBN: 9780521218986
Category : Science
Languages : en
Pages : 544
Book Description
In this second, enlarged edition the author continues to emphasise aspects of rock mechanics. Firm in his belief that there is no better way to study the subject than by the detailed analysis of case histories, Dr Jaeger has incorporated a number of new ones.
Publisher: Cambridge University Press
ISBN: 9780521218986
Category : Science
Languages : en
Pages : 544
Book Description
In this second, enlarged edition the author continues to emphasise aspects of rock mechanics. Firm in his belief that there is no better way to study the subject than by the detailed analysis of case histories, Dr Jaeger has incorporated a number of new ones.
Discontinuity Analysis for Rock Engineering
Author: S.D. Priest
Publisher: Springer Science & Business Media
ISBN: 9401114986
Category : Science
Languages : en
Pages : 490
Book Description
Engineers wishing to build structures on or in rock use the discipline known as rock mechanics. This discipline emerged as a subject in its own right about thirty five years ago, and has developed rapidly ever since. However, rock mechanics is still based to a large extent on analytical techniques that were originally formulated for the mechanical design of structures made from man made materials. The single most important distinction between man-made materials and the natural material rock is that rock contains fractures, of many kinds on many scales; and because the fractures - of whatever kin- represent breaks in the mechanical continuum, they are collectively termed 'discontinuities' . An understanding of the mechanical influence of these discontinuities is essential to all rock engineers. Most of the world is made of rock, and most of the rock near the surface is fractured. The fractures dominate the rock mass geometry, deformation modulus, strength, failure behaviour, permeability, and even the local magnitudes and directions of the in situ stress field. Clearly, an understanding of the presence and mechanics of the discontinuities, both singly and in the rock mass context, is therefore of paramount importance to civil, mining and petroleum engineers. Bearing this in mind, it is surprising that until now there has been no book dedicated specifically to the subject of discontinuity analysis in rock engineering.
Publisher: Springer Science & Business Media
ISBN: 9401114986
Category : Science
Languages : en
Pages : 490
Book Description
Engineers wishing to build structures on or in rock use the discipline known as rock mechanics. This discipline emerged as a subject in its own right about thirty five years ago, and has developed rapidly ever since. However, rock mechanics is still based to a large extent on analytical techniques that were originally formulated for the mechanical design of structures made from man made materials. The single most important distinction between man-made materials and the natural material rock is that rock contains fractures, of many kinds on many scales; and because the fractures - of whatever kin- represent breaks in the mechanical continuum, they are collectively termed 'discontinuities' . An understanding of the mechanical influence of these discontinuities is essential to all rock engineers. Most of the world is made of rock, and most of the rock near the surface is fractured. The fractures dominate the rock mass geometry, deformation modulus, strength, failure behaviour, permeability, and even the local magnitudes and directions of the in situ stress field. Clearly, an understanding of the presence and mechanics of the discontinuities, both singly and in the rock mass context, is therefore of paramount importance to civil, mining and petroleum engineers. Bearing this in mind, it is surprising that until now there has been no book dedicated specifically to the subject of discontinuity analysis in rock engineering.