Elements of Quasigroup Theory and Applications

Elements of Quasigroup Theory and Applications PDF Author: Victor Shcherbacov
Publisher: CRC Press
ISBN: 1498721567
Category : Computers
Languages : en
Pages : 599

Get Book Here

Book Description
Understanding Interaction is a book that explores the interaction between people and technology, in the broader context of the relations between the human made and the natural environments. It is not just about digital technologies – our computers, smart phones, the Internet – but all our technologies such as mechanical, electrical and electronic. Our ancestors started creating mechanical tools and shaping their environments millions of years ago, developing cultures and languages, which in turn influenced our evolution. Volume 1 of Understanding Interaction looks into this deep history – starting from the tool creating period (the longest and most influential on our physical and mental capacities), to the settlement period (agriculture, domestication, villages and cities, written language), the industrial period (science, engineering, reformation and renaissance), and finally the communication period (mass media, digital technologies, global networks). Volume 2 looks into humans in interaction – our physiology, anatomy, neurology, psychology, how we experience and influence the world, and how we (think we) think. From this transdisciplinary understanding, design approaches and frameworks are presented, to potentially guide future developments and innovations. The aim of the book is to be guide and inspiration for designers, artists, engineers, psychologists, media producers, social scientists etc., and as such be useful for both novices and more experienced practitioners.

Elements of Quasigroup Theory and Applications

Elements of Quasigroup Theory and Applications PDF Author: Victor Shcherbacov
Publisher: CRC Press
ISBN: 1498721567
Category : Computers
Languages : en
Pages : 599

Get Book Here

Book Description
Understanding Interaction is a book that explores the interaction between people and technology, in the broader context of the relations between the human made and the natural environments. It is not just about digital technologies – our computers, smart phones, the Internet – but all our technologies such as mechanical, electrical and electronic. Our ancestors started creating mechanical tools and shaping their environments millions of years ago, developing cultures and languages, which in turn influenced our evolution. Volume 1 of Understanding Interaction looks into this deep history – starting from the tool creating period (the longest and most influential on our physical and mental capacities), to the settlement period (agriculture, domestication, villages and cities, written language), the industrial period (science, engineering, reformation and renaissance), and finally the communication period (mass media, digital technologies, global networks). Volume 2 looks into humans in interaction – our physiology, anatomy, neurology, psychology, how we experience and influence the world, and how we (think we) think. From this transdisciplinary understanding, design approaches and frameworks are presented, to potentially guide future developments and innovations. The aim of the book is to be guide and inspiration for designers, artists, engineers, psychologists, media producers, social scientists etc., and as such be useful for both novices and more experienced practitioners.

Algebra without Borders – Classical and Constructive Nonassociative Algebraic Structures

Algebra without Borders – Classical and Constructive Nonassociative Algebraic Structures PDF Author: Mahouton Norbert Hounkonnou
Publisher: Springer Nature
ISBN: 3031393341
Category : Mathematics
Languages : en
Pages : 600

Get Book Here

Book Description
This book gathers invited, peer-reviewed works presented at the 2021 edition of the Classical and Constructive Nonassociative Algebraic Structures: Foundations and Applications—CaCNAS: FA 2021, virtually held from June 30 to July 2, 2021, in dedication to the memory of Professor Nebojša Stevanović (1962-2009). The papers cover new trends in the field, focusing on the growing development of applications in other disciplines. These aspects interplay in the same cadence, promoting interactions between theory and applications, and between nonassociative algebraic structures and various fields in pure and applied mathematics. In this volume, the reader will find novel studies on topics such as left almost algebras, logical algebras, groupoids and their generalizations, algebraic geometry and its relations with quiver algebras, enumerative combinatorics, representation theory, fuzzy logic and foundation theory, fuzzy algebraic structures, group amalgams, computer-aided development and transformation of the theory of nonassociative algebraic structures, and applications within natural sciences and engineering. Researchers and graduate students in algebraic structures and their applications can hugely benefit from this book, which can also interest any researcher exploring multi-disciplinarity and complexity in the scientific realm.

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume I

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume I PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 3038973858
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity (i.e., element, concept, idea, theory, logical proposition, etc.), is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded; they have a similar form: (x, neut(x), anti(x), that satisfy some axioms, for each element x in a given set. This book contains the successful invited submissions to a special issue of Symmetry, reporting on state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets, and their algebraic structures—that have been defined recently in 2016, but have gained interest from world researchers, and several papers have been published in first rank international journals.

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets PDF Author: Florentin Smarandache
Publisher: MDPI
ISBN: 303897384X
Category : Mathematics
Languages : en
Pages : 478

Get Book Here

Book Description
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.

Variational-Hemivariational Inequalities with Applications

Variational-Hemivariational Inequalities with Applications PDF Author: Mircea Sofonea
Publisher: CRC Press
ISBN: 1498761593
Category : Mathematics
Languages : en
Pages : 329

Get Book Here

Book Description
This research monograph represents an outcome of the cross-fertilization between nonlinear functional analysis and mathematical modelling, and demonstrates its application to solid and contact mechanics. Based on authors’ original results, it introduces a general fixed point principle and its application to various nonlinear problems in analysis and mechanics. The classes of history-dependent operators and almost history-dependent operators are exposed in a large generality. A systematic and unified presentation contains a carefully-selected collection of new results on variational-hemivariational inequalities with or without unilateral constraints. A wide spectrum of static, quasistatic, dynamic contact problems for elastic, viscoelastic and viscoplastic materials illustrates the applicability of these theoretical results. Written for mathematicians, applied mathematicians, engineers and scientists, it is also a valuable tool for graduate students and researchers in nonlinear analysis, mathematical modelling, mechanics of solids, and contact mechanics.

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications PDF Author: Daniele Bertaccini
Publisher: CRC Press
ISBN: 1351649612
Category : Mathematics
Languages : en
Pages : 321

Get Book Here

Book Description
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.

Noncommutative Deformation Theory

Noncommutative Deformation Theory PDF Author: Eivind Eriksen
Publisher: CRC Press
ISBN: 1498796028
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
Noncommutative Deformation Theory is aimed at mathematicians and physicists studying the local structure of moduli spaces in algebraic geometry. This book introduces a general theory of noncommutative deformations, with applications to the study of moduli spaces of representations of associative algebras and to quantum theory in physics. An essential part of this theory is the study of obstructions of liftings of representations using generalised (matric) Massey products. Suitable for researchers in algebraic geometry and mathematical physics interested in the workings of noncommutative algebraic geometry, it may also be useful for advanced graduate students in these fields.

Spectral and Scattering Theory for Second Order Partial Differential Operators

Spectral and Scattering Theory for Second Order Partial Differential Operators PDF Author: Kiyoshi Mochizuki
Publisher: CRC Press
ISBN: 1498756034
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
The book is intended for students of graduate and postgraduate level, researchers in mathematical sciences as well as those who want to apply the spectral theory of second order differential operators in exterior domains to their own field. In the first half of this book, the classical results of spectral and scattering theory: the selfadjointness, essential spectrum, absolute continuity of the continuous spectrum, spectral representations, short-range and long-range scattering are summarized. In the second half, recent results: scattering of Schrodinger operators on a star graph, uniform resolvent estimates, smoothing properties and Strichartz estimates, and some applications are discussed.

Hyperidentities: Boolean And De Morgan Structures

Hyperidentities: Boolean And De Morgan Structures PDF Author: Yuri Movsisyan
Publisher: World Scientific
ISBN: 9811254931
Category : Mathematics
Languages : en
Pages : 561

Get Book Here

Book Description
Hyperidentities are important formulae of second-order logic, and research in hyperidentities paves way for the study of second-order logic and second-order model theory.This book illustrates many important current trends and perspectives for the field of hyperidentities and their applications, of interest to researchers in modern algebra and discrete mathematics. It covers a number of directions, including the characterizations of the Boolean algebra of n-ary Boolean functions and the distributive lattice of n-ary monotone Boolean functions; the classification of hyperidentities of the variety of lattices, the variety of distributive (modular) lattices, the variety of Boolean algebras, and the variety of De Morgan algebras; the characterization of algebras with aforementioned hyperidentities; the functional representations of finitely-generated free algebras of various varieties of lattices and bilattices via generalized Boolean functions (De Morgan functions, quasi-De Morgan functions, super-Boolean functions, super-De Morgan functions, etc); the structural results for De Morgan algebras, Boole-De Morgan algebras, super-Boolean algebras, bilattices, among others.While problems of Boolean functions theory are well known, the present book offers alternative, more general problems, involving the concepts of De Morgan functions, quasi-De Morgan functions, super-Boolean functions, and super-De Morgan functions, etc. In contrast to other generalized Boolean functions discovered and investigated so far, these functions have clearly normal forms. This quality is of crucial importance for their applications in pure and applied mathematics, especially in discrete mathematics, quantum computation, quantum information theory, quantum logic, and the theory of quantum computers.

Optimization and Differentiation

Optimization and Differentiation PDF Author: Simon Serovajsky
Publisher: CRC Press
ISBN: 1351648489
Category : Mathematics
Languages : en
Pages : 638

Get Book Here

Book Description
Optimization and Differentiation is an introduction to the application of optimization control theory to systems described by nonlinear partial differential equations. As well as offering a useful reference work for researchers in these fields, it is also suitable for graduate students of optimal control theory.