Electron Transfer in Chemistry, Principles, Theories, Methods, and Techniques

Electron Transfer in Chemistry, Principles, Theories, Methods, and Techniques PDF Author: Vincenzo Balzani
Publisher: Wiley-VCH
ISBN:
Category : Science
Languages : en
Pages : 680

Get Book

Book Description
Electron transfer is the most important process to take place in natural and artificial chemical systems, playing a fundamental role, for example, in photosynthesis as well as in photography. Electron transfer reactions - oxidations and reductions - are involved in, among others, a variety of energy conversion processes, analytical methods, synthetic strategies, and information processing systems. This five-volume work is the only comprehensive yet up-to-date reference on electron transfer processes. Following a foreword by Nobel prize-winner R. A. Marcus, renowned experts from all over the world provide an interdisciplinary overview of every aspect of electron transfer including theoretical-physicochemical backgrounds, latest analytical techniques to identify, monitor and measure the rate of electron transfer, utilizing electron transfer reactions in organic synthesis and catalysis, electron transfer in the gas phase or in special heterogeneous systems such as zeolites or sensitized electrodes. Other central issues are the study of biological systems and the biomimetic electron transfer processes in artificial supramolecular systems. Finally, a complete volume is dedicated to the application of electron transfer in molecular-level electronics, imaging processes and energy conversion. Each chapter is complemented by numerous tables, formulae and illustrations providing an indispensable wealth of information. All references are cross-indexed throughout the work for easy access to this highly complex topic. Whether for quickly looking-up a keyword or as a thorough introduction to a special aspect, this is an essential handbook for everyone working in the field, from experts to postgraduates, from synthetic chemists, physicochemists or biochemists to research groups in material sciences.

Electron Transfer in Chemistry, Principles, Theories, Methods, and Techniques

Electron Transfer in Chemistry, Principles, Theories, Methods, and Techniques PDF Author: Vincenzo Balzani
Publisher: Wiley-VCH
ISBN:
Category : Science
Languages : en
Pages : 680

Get Book

Book Description
Electron transfer is the most important process to take place in natural and artificial chemical systems, playing a fundamental role, for example, in photosynthesis as well as in photography. Electron transfer reactions - oxidations and reductions - are involved in, among others, a variety of energy conversion processes, analytical methods, synthetic strategies, and information processing systems. This five-volume work is the only comprehensive yet up-to-date reference on electron transfer processes. Following a foreword by Nobel prize-winner R. A. Marcus, renowned experts from all over the world provide an interdisciplinary overview of every aspect of electron transfer including theoretical-physicochemical backgrounds, latest analytical techniques to identify, monitor and measure the rate of electron transfer, utilizing electron transfer reactions in organic synthesis and catalysis, electron transfer in the gas phase or in special heterogeneous systems such as zeolites or sensitized electrodes. Other central issues are the study of biological systems and the biomimetic electron transfer processes in artificial supramolecular systems. Finally, a complete volume is dedicated to the application of electron transfer in molecular-level electronics, imaging processes and energy conversion. Each chapter is complemented by numerous tables, formulae and illustrations providing an indispensable wealth of information. All references are cross-indexed throughout the work for easy access to this highly complex topic. Whether for quickly looking-up a keyword or as a thorough introduction to a special aspect, this is an essential handbook for everyone working in the field, from experts to postgraduates, from synthetic chemists, physicochemists or biochemists to research groups in material sciences.

Isotope Effects In Chemistry and Biology

Isotope Effects In Chemistry and Biology PDF Author: Amnon Kohen
Publisher: CRC Press
ISBN: 1420028022
Category : Medical
Languages : en
Pages : 1092

Get Book

Book Description
The field of isotope effects has expanded exponentially in the last decade, and researchers are finding isotopes increasingly useful in their studies. Bringing literature on the subject up to date, Isotope Effects in Chemistry and Biology covers current principles, methods, and a broad range of applications of isotope effects in the physical, biolo

Time Resolved Single Molecule Fluorescence Spectroscopy on Surface Tethered and Freely Diffusing Proteins

Time Resolved Single Molecule Fluorescence Spectroscopy on Surface Tethered and Freely Diffusing Proteins PDF Author: Diaa Atta
Publisher: Forschungszentrum Jülich
ISBN: 3893367632
Category :
Languages : en
Pages : 143

Get Book

Book Description


Introduction To Marcus Theory Of Electron Transfer Reactions

Introduction To Marcus Theory Of Electron Transfer Reactions PDF Author: Francesco Di Giacomo
Publisher: World Scientific
ISBN: 9811208484
Category : Science
Languages : en
Pages : 873

Get Book

Book Description
This book, with a foreword from Nobel Laureate Rudolph A Marcus, aims at introducing the reader to the Marcus theory of electron transfer reactions from a reading of excerpts of Marcus' papers. Notes from the author may be of help to the student or the beginner. Marcus' notes at the end of each paper, with his comments and remarks, are an invaluable supplement to his articles for students and scholars in the field of electron transfer reactions.

Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems PDF Author: Marko M. Melander
Publisher: John Wiley & Sons
ISBN: 111960561X
Category : Science
Languages : en
Pages : 372

Get Book

Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Electron Transfer

Electron Transfer PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book

Book Description


Electron Transfer Reactions

Electron Transfer Reactions PDF Author: R. D. Cannon
Publisher: Butterworth-Heinemann
ISBN: 1483103293
Category : Science
Languages : en
Pages : 364

Get Book

Book Description
Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfer; optical electron transfer; and electron transfer in the solid state. The text is recommended for chemists who would like to know more about the principles and mechanisms behind electron transfer reactions.

European Journal of Inorganic Chemistry

European Journal of Inorganic Chemistry PDF Author:
Publisher:
ISBN:
Category : Bioinorganic chemistry
Languages : en
Pages : 820

Get Book

Book Description


Advances in Quantum Chemistry

Advances in Quantum Chemistry PDF Author: John R. Sabin
Publisher: Gulf Professional Publishing
ISBN: 9780120348428
Category : Science
Languages : en
Pages : 504

Get Book

Book Description
Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field that falls between the historically established areas of mathematics, physics, chemistry, and biology. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area.

Photoinduced Electron Transfer

Photoinduced Electron Transfer PDF Author: Marye Anne Fox
Publisher: Elsevier Science Limited
ISBN: 9780444871251
Category : Chemical reaction, Conditions and laws of
Languages : en
Pages : 790

Get Book

Book Description
Electron transfer reactions are of great importance to nearly every subdiscipline of chemistry. The simple transfer of a single electron has been shown repeatedly to be a common activating mode for organic, inorganic, and biological molecules, and the very ubiquity of such reactions has guaranteed that their investigation would involve the most fundamental questions of modern chemistry. The fact that photoexcitation induces enhanced redox reactivity via electron transfer also provides a convenient method for experimentally testing theoretical predictions regarding structural and energetic effects. As can be seen from the very size of this work there is a great deal known about photoinduced electron transfer reactions and the editors have tried to capture the diversity and excitement inherent in this broad field. The reader will find contributions from theorists and experimentalists, from organic and inorganic chemists, from the perspective of the synthetic and mechanistic viewpoint. Some contributions are fundamental basic research, while others clearly show practical applications of these principles.These volumes are intended to serve a joint purpose: as a reference resource and an introductory overview to the diverse research accomplished via photoexcitation of electron donor-acceptor systems. The information is organized in four parts. The first deals with the theoretical and conceptual factors which influence electron transfer. The second covers experimental methodology and medium effects. The third and fourth deal with reactivity, with most organic transformation being addressed in Part C and most inorganic reactions covered in Part D. Each part thus provides an overview of typical reactions observed for these classes of compounds. Part D also provides examples of photoinduced electron transfer in current use in important applications. There is of course a significant interdependence between the four parts. Subject, chemical, and author citation indices appear at the end of each of Parts A, B and C, and comprehensive indices are included in Part D.