Electric Field-Induced Effects on Neuronal Cell Biology Accompanying Dielectrophoretic Trapping

Electric Field-Induced Effects on Neuronal Cell Biology Accompanying Dielectrophoretic Trapping PDF Author: Tjitske Heida
Publisher: Springer Science & Business Media
ISBN: 3642554695
Category : Medical
Languages : en
Pages : 128

Get Book Here

Book Description
The concept of the cultured neuron probe was induced by the possible selective stimulation of nerves for functional recovery after a neural lesion or disease. The probe consists of a micro-electrode array on top of which groups of neuronal cells are cultured. An efficient method to position groups of neuronal cells on top of the stimulation sites of the micro-electrode array is developed. With negative dielectrophoretic forces, produced by non-uniform electric fields on polarizable particles, neuronal cells are trapped. Experimental results and model simulations describe the trapping process and its effect on neuronal cell viability.

Electric Field-Induced Effects on Neuronal Cell Biology Accompanying Dielectrophoretic Trapping

Electric Field-Induced Effects on Neuronal Cell Biology Accompanying Dielectrophoretic Trapping PDF Author: Tjitske Heida
Publisher: Springer Science & Business Media
ISBN: 3642554695
Category : Medical
Languages : en
Pages : 128

Get Book Here

Book Description
The concept of the cultured neuron probe was induced by the possible selective stimulation of nerves for functional recovery after a neural lesion or disease. The probe consists of a micro-electrode array on top of which groups of neuronal cells are cultured. An efficient method to position groups of neuronal cells on top of the stimulation sites of the micro-electrode array is developed. With negative dielectrophoretic forces, produced by non-uniform electric fields on polarizable particles, neuronal cells are trapped. Experimental results and model simulations describe the trapping process and its effect on neuronal cell viability.

Electrical Properties of Materials

Electrical Properties of Materials PDF Author: Laszlo Solymar
Publisher: Oxford University Press, USA
ISBN: 0198702787
Category : Science
Languages : en
Pages : 502

Get Book Here

Book Description
"A classic text in the field, providing a readable and accessible guide for students of electrical and electronic engineering. Ideal for undergraduates, the book is also an invaluable reference for graduate students and others wishing to explore this rapidly expanding field." -Cover.

Brain and Human Body Modeling

Brain and Human Body Modeling PDF Author: Sergey Makarov
Publisher: Springer Nature
ISBN: 3030212939
Category : Technology & Engineering
Languages : en
Pages : 398

Get Book Here

Book Description
This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.

Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems

Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems PDF Author: Martin Blank
Publisher: Springer Science & Business Media
ISBN: 1489919686
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
Although there is general agreement that exogenous electric and electromagnetic fields influence and modulate the properties of biological systems. there is no concensus regarding the mechanisms by which such fields operate. It is the purpose of this volume to bring together and examine critically the mechanistic models and concepts that have been proposed. We have chosen to arrange the papers in terms of the level of biological organization emphasized by the contributors. Some papers overlap categories. but the progression from ions and membrane surfaces. through macromolecules and the membrane matrix to integrated systems. establishes a mechanistic chain of causality that links the basic interactions in the relatively well understood simple systems to the complex living systems. where all effects occur simultaneously. The backgrounds of the invited contributors include biochemistry. biophysics. cell biology. electrical engineering. electrochemistry. electrophysiology. medicine and physical chemistry. As a result of this diversity. the mechanistic models reflect the differing approaches used by these disciplines to explain the same phenomena. Areas of agreement define the common ground. while the areas of divergence provide opportunities for refining our ideas through further experimentation. To facilitate the interaction between the different points of view, the authors have clearly indicated those published observations that they are trying to explain. i.e. the experiments that have been critical in their thinking. This should establish a concensus regarding important observations. In the discussion of theories.

Handbook of Biological Effects of Electromagnetic Fields, Third Edition - 2 Volume Set

Handbook of Biological Effects of Electromagnetic Fields, Third Edition - 2 Volume Set PDF Author: Charles Polk
Publisher: CRC Press
ISBN: 9780849306419
Category : Technology & Engineering
Languages : en
Pages : 636

Get Book Here

Book Description
The first edition of this book has been recognized as the standard reference on biological effects of electric and magnetic fields from DC to microwaves. But much has changed in this science since the book's original publication in 1986. With contributions from eighteen leading researchers, this latest edition includes authoritative discussions of many new developments and will quickly become the new, must-have resource handbook. Dielectric properties of biological tissue are thoroughly examined, followed by chapters on physical mechanisms and biological effects of static and extremely low frequency magnetic fields. New chapters on topics that were treated very briefly in the first edition now receive extensive treatment. These topics include electric and magnetic fields for bone and soft tissue repair, electroporation, and epidemiology of ELF health effects. The chapter on computer methods for predicting field intensity has been substantially revised to describe new numerical techniques developed within the last few years and includes calculations of power absorbed in the human head from cellular telephones. The chapter discussing experimental results on RF interaction with living matter now contains information on effects of very high power, very short duration pulses. A new appendix on safety standards is based on the latest publications of governmental, as well as quasi-governmental organizations (such as the U.S. Council on Radiation Protection) in the United States, Europe, and Australia. With all its revisions, this updated version of the CRC Handbook of Biological Effects of Electromagnetic Fields provides the most comprehensive overview available of this rapidly changing science.

Irreversible Electroporation

Irreversible Electroporation PDF Author: Boris Rubinsky
Publisher: Springer Science & Business Media
ISBN: 364205420X
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book Here

Book Description
Non-thermal irreversible electroporation is a new minimally invasive surgical p- cedure with unique molecular selectivity attributes – in fact it may be considered the first clinical molecular surgery procedure. Non-thermal irreversible electro- ration is a molecular selective mode of cell ablation that employs brief electrical fields to produce nanoscale defects in the cell membrane, which can lead to cell death, without an effect on any of the other tissue molecules. The electrical fields can be produced through contact by insertion of electrode needles around the undesirable tissue and non-invasively by electromagnetic induction. This new - dition to the medical armamentarium requires the active involvement and is of interest to clinical physicians, medical researchers, mechanical engineers, che- cal engineers, electrical engineers, instrumentation designers, medical companies and many other fields and disciplines that were never exposed in their training to irreversible electroporation or to a similar concept. This edited book is designed to be a comprehensive introduction to the field of irreversible electroporation to those that were not exposed or trained in the field before and can also serve as a reference manual. Irreversible electroporation is broad and interdisciplinary. Therefore, we have made an attempt to cover every one of the various aspects of the field from an introductory basic level to state of the art.

Bioengineering and Biophysical Aspects of Electromagnetic Fields

Bioengineering and Biophysical Aspects of Electromagnetic Fields PDF Author: Ben Greenebaum
Publisher: CRC Press
ISBN: 1420009478
Category : Technology & Engineering
Languages : en
Pages : 482

Get Book Here

Book Description
Bioengineering and Biophysical Aspects of Electromagnetic Fields primarily contains discussions on the physics, engineering, and chemical aspects of electromagnetic (EM) fields at both the molecular level and larger scales, and investigates their interactions with biological systems. The first volume of the bestselling and newly updated Handbook of Biological Effects of Electromagnetic Fields, Third Edition, this book adds material describing recent theoretical developments, as well as new data on material properties and interactions with weak and strong static magnetic fields. Newly separated and expanded chapters describe the external and internal electromagnetic environments of organisms and recent developments in the use of RF fields for imaging. Bioengineering and Biophysical Aspects of Electromagnetic Fields provides an accessible overview of the current understanding on the scientific underpinnings of these interactions, as well as a partial introduction to experiments on the interactions themselves.

Solar Energy Update

Solar Energy Update PDF Author:
Publisher:
ISBN:
Category : Solar energy
Languages : en
Pages : 248

Get Book Here

Book Description


Methods of Cell Separation

Methods of Cell Separation PDF Author: Nicholas Catsimpoolas
Publisher: Springer Science & Business Media
ISBN: 1468408208
Category : Medical
Languages : en
Pages : 370

Get Book Here

Book Description
Presently, the need for methods involving separation, identification, and characterization of different kinds of cells is amply realized among immu nologists, hematologists, cell biologists, clinical pathologists, and cancer researchers. Unless cells exhibiting different functions and stages of differ entiation are separated from one another, it will be exceedingly difficult to study some of the molecular mechanisms involved in cell recognition, specialization, interactions, cytotoxicity, and transformation. Clinical diag nosis of diseased states and use of isolated cells for therapeutic (e. g. , immunotherapy) or survival (e. g. , transfusion) purposes are some of the pressing areas where immediate practical benefits can be obtained by applying cell separation techniques. However. the development of such useful methods is still in its infancy. A number of good techniques exist based either on the physical or biological properties of the cells, and these have produced some valuable results. Still others are to be discovered. Therefore, the purpose of this open-end treatise is to acquaint the reader with some of the basic principles, instrumentation, and procedures pres ently in practice at various laboratories around the world and to present some typical applications of each technique to particular biological prob lems. To this end, I was fortunate to obtain the contribution of certain leading scientists in the field of cell separation, people who in their pioneer ing work have struggled with the particular problems involved in separating living cells and in some way have won.

Bioimpedance and Bioelectricity Basics

Bioimpedance and Bioelectricity Basics PDF Author: Orjan G. Martinsen
Publisher: Academic Press
ISBN: 0124115330
Category : Technology & Engineering
Languages : en
Pages : 585

Get Book Here

Book Description
Bioimpedance and Bioelectricity Basics, 3rd Edition paves an easier and more efficient way for people seeking basic knowledge about this discipline. This book's focus is on systems with galvanic contact with tissue, with specific detail on the geometry of the measuring system. Both authors are internationally recognized experts in the field. The highly effective, easily followed organization of the second edition has been retained, with a new discussion of state-of-the-art advances in data analysis, modelling, endogenic sources, tissue electrical properties, electrodes, instrumentation and measurements. This book provides the basic knowledge of electrochemistry, electronic engineering, physics, physiology, mathematics, and model thinking that is needed to understand this key area in biomedicine and biophysics. - Covers tissue immittance from the ground up in an intuitive manner, supported with figures and examples - New chapters on electrodes and statistical analysis - Discusses in detail dielectric and electrochemical aspects, geometry and instrumentation as well as electrical engineering concepts of network theory, providing a cross-disciplinary resource for engineers, life scientists, and physicists