Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems

Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems PDF Author: Monia Ben Khader Bouzid
Publisher: John Wiley & Sons
ISBN: 1394236433
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
Wind energy conversion systems are subject to many different types of faults and therefore fault detection is highly important to ensure reliability and safety. Monitoring systems can help to detect faults before they result in downtime. This book presents efficient methods used to detect electrical and mechanical faults based on electrical signals occurring in the different components of a wind energy conversion system. For example, in a small and high power synchronous generator and multi-phase generator, in the diode bridge rectifier, the gearbox and the sensors. This book also presents a method for keeping the frequency and voltage of the power grid within an allowable range while ensuring the continuity of power supply in the event of a grid fault. Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems presents original results obtained from a variety of research. It will not only be useful as a guideline for the conception of more robust wind turbines systems, but also for engineers monitoring wind turbines and researchers

Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems

Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems PDF Author: Monia Ben Khader Bouzid
Publisher: John Wiley & Sons
ISBN: 1394236433
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
Wind energy conversion systems are subject to many different types of faults and therefore fault detection is highly important to ensure reliability and safety. Monitoring systems can help to detect faults before they result in downtime. This book presents efficient methods used to detect electrical and mechanical faults based on electrical signals occurring in the different components of a wind energy conversion system. For example, in a small and high power synchronous generator and multi-phase generator, in the diode bridge rectifier, the gearbox and the sensors. This book also presents a method for keeping the frequency and voltage of the power grid within an allowable range while ensuring the continuity of power supply in the event of a grid fault. Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems presents original results obtained from a variety of research. It will not only be useful as a guideline for the conception of more robust wind turbines systems, but also for engineers monitoring wind turbines and researchers

Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems

Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems PDF Author: Monia Ben Khader Bouzid
Publisher: John Wiley & Sons
ISBN: 1786309319
Category : Technology & Engineering
Languages : en
Pages : 228

Get Book Here

Book Description
Wind energy conversion systems are subject to many different types of faults and therefore fault detection is highly important to ensure reliability and safety. Monitoring systems can help to detect faults before they result in downtime. This book presents efficient methods used to detect electrical and mechanical faults based on electrical signals occurring in the different components of a wind energy conversion system. For example, in a small and high power synchronous generator and multi-phase generator, in the diode bridge rectifier, the gearbox and the sensors. This book also presents a method for keeping the frequency and voltage of the power grid within an allowable range while ensuring the continuity of power supply in the event of a grid fault. Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems presents original results obtained from a variety of research. It will not only be useful as a guideline for the conception of more robust wind turbines systems, but also for engineers monitoring wind turbines and researchers

Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems

Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems PDF Author: Hasmat Malik
Publisher: Springer Nature
ISBN: 9811515328
Category : Technology & Engineering
Languages : en
Pages : 499

Get Book Here

Book Description
This book addresses a range of complex issues associated with condition monitoring (CM), fault diagnosis and detection (FDD) in smart buildings, wide area monitoring (WAM), wind energy conversion systems (WECSs), photovoltaic (PV) systems, structures, electrical systems, mechanical systems, smart grids, etc. The book’s goal is to develop and combine all advanced nonintrusive CMFD approaches on a common platform. To do so, it explores the main components of various systems used for CMFD purposes. The content is divided into three main parts, the first of which provides a brief introduction, before focusing on the state of the art and major research gaps in the area of CMFD. The second part covers the step-by-step implementation of novel soft computing applications in CMFD for electrical and mechanical systems. In the third and final part, the simulation codes for each chapter are included in an extensive appendix to support newcomers to the field.

Fault Detection and Fault Tolerant Control in Wind Turbines

Fault Detection and Fault Tolerant Control in Wind Turbines PDF Author: Christian Tutivén Gálvez
Publisher:
ISBN:
Category :
Languages : en
Pages : 160

Get Book Here

Book Description
Renewable energy is an important sustainable energy in the world. Up to now, as an essential part of low emissions energy in a lot of countries, renewable energy has been important to the national energy security, and played a significant role in reducing carbon emissions. It comes from natural resources, such as wind, solar, rain, tides, biomass, and geothermal heat. Among them, wind energy is rapidly emerging as a low carbon, resource efficient, cost effective sustainable technology in the world. Due to the demand of higher power production installations with less environmental impacts, the continuous increase in size of wind turbines and the recently developed offshore (floating) technologies have led to new challenges in the wind turbine systems.Wind turbines (WTs) are complex systems with large flexible structures that work under very turbulent and unpredictable environmental conditions for a variable electrical grid. The maximization of wind energy conversion systems, load reduction strategies, mechanical fatigue minimization problems, costs per kilowatt hour reduction strategies, reliability matters, stability problems, and availability (sustainability) aspects demand the use of advanced (multivariable and multiobjective) cooperative control systems to regulate variables such as pitch, torque, power, rotor speed, power factors of every wind turbine, etc. Meanwhile, with increasing demands for efficiency and product quality and progressing integration of automatic control systems in high-cost and safety-critical processes, the fields of fault detection and isolation (FDI) and fault tolerant control (FTC) play an important role. This thesis covers the theoretical development and also the implementation of different FDI and FTC techniques in WTs. The purpose of wind turbine FDI systems is to detect and locate degradations and failures in the operation of WT components as early as possible, so that maintenance operations can be performed in due time (e.g., during time periods with low wind speed). Therefore, the number of costly corrective maintenance actions can be reduced and consequently the loss of wind power production due to maintenance operations is minimized. The objective of FTC is to design appropriate controllers such that the resulting closed-loop system can tolerate abnormal operations of specific control components and retain overall system stability with acceptable system performance. Different FDI and FTC contributions are presented in this thesis and published in different JCR-indexed journals and international conference proceedings. These contributions embrace a wide range of realistic WTs faults as well as different WTs types (onshore, fixed offshore, and floating). In the first main contribution, the normalized gradient method is used to estimate the pitch actuator parameters to be able to detect faults in it. In this case, an onshore WT is used for the simulations. Second contribution involves not only to detect faults but also to isolate them in the pitch actuator system. To achieve this, a discrete-time domain disturbance compensator with a controller to detect and isolate pitch actuator faults is designed. Third main contribution designs a super-twisting controller by using feedback of the fore-aft and side-to-side acceleration signals of the WT tower to provide fault tolerance capabilities to the WT and improve the overall performance of the system. In this instance, a fixed-jacket offshore WT is used. Throughout the aforementioned research, it was observed that some faults induce to saturation of the control signal leading to system instability. To preclude that problem, the fourth contribution of this thesis designs a dynamic reference trajectory based on hysteresis. Finally, the fifth and last contribution is related to floating-barge WTs and the challenges that this WTs face. The performance of the proposed contributions are tested in simulations with the aero-elastic code FAST.

Mechanical Energy Conversion

Mechanical Energy Conversion PDF Author: Mathieu Mory
Publisher: John Wiley & Sons
ISBN: 1394299052
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
This book studies the principles of mechanical energy conversion used in renewable energy sources derived from air and water: wind power, tidal power, hydroelectric power, osmotic energy, ocean thermal energy and wave energy. Mechanical Energy Conversion presents twelve application exercises and their answers. They enable the reader to first understand the physical principles of mechanical energy converters and then learn the method for sizing them. The book also reinforces the concepts of fluid mechanics and hydraulic turbo machinery, which are required to solve the exercises. This book aims to instruct readers on how to design an energy system. For each renewable energy source covered – and based on the quantity of energy or power supplied – it describes the production process, explains how it works and calculates the characteristics and dimensions of its components.

Converter Fault Diagnosis and Post-fault Operation of a Doubly-fed Induction Generator for a Wind Turbine

Converter Fault Diagnosis and Post-fault Operation of a Doubly-fed Induction Generator for a Wind Turbine PDF Author: Warachart Sae-Kok
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Wind energy has become one of the most important alternative energy resources because of the global warming crisis. Wind turbines are often erected off-shore because of favourable wind conditions, requiring lower towers than on-shore. The doubly-fed induction generator is one of the most widely used generators with wind turbines. In such a wind turbine the power converters are less robust than the generator and other mechanical parts. If any switch failure occurs in the converters, the wind turbine may be seriously damaged and have to stop. Therefore, converter health monitoring and fault diagnosis are important to improve system reliability. Moreover, to avoid shutting down the wind turbine, converter fault diagnosis may permit a change in control strategy and/or reconfigure the power converters to permit post-fault operation. This research focuses on switch fault diagnosis and post-fault operation for the converters of the doubly-fed induction generator. The effects of an open-switch fault and a short-circuit switch fault are analysed. Several existing open-switch fault diagnosis methods are examined but are found to be unsuitable for the doubly-fed induction generator. The causes of false alarms with these methods are investigated. A proposed diagnosis method, with false alarm suppression, has the fault detection capability equivalent to the best of the existing methods, but improves system reliability. After any open-switch fault is detected, reconfiguration to a four-switch topology is activated to avoid shutting down the system. Short-circuit switch faults are also investigated. Possible methods to deal with this fault are discussed and demonstrated in simulation. Operating the doubly-fed induction generator as a squirrel cage generator with aerodynamic power control of turbine blades is suggested if this fault occurs in the machine-side converter, while constant dc voltage control is suitable for a short-circuit switch fault in the grid-side converter.

Electrical Insulation for Rotating Machines

Electrical Insulation for Rotating Machines PDF Author: Greg C. Stone
Publisher: John Wiley & Sons
ISBN: 1118892291
Category : Technology & Engineering
Languages : en
Pages : 685

Get Book Here

Book Description
A fully expanded new edition documenting the significant improvements that have been made to the tests and monitors of electrical insulation systems Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair, Second Edition covers all aspects in the design, deterioration, testing, and repair of the electrical insulation used in motors and generators of all ratings greater than fractional horsepower size. It discusses both rotor and stator windings; gives a historical overview of machine insulation design; and describes the materials and manufacturing methods of the rotor and stator winding insulation systems in current use (while covering systems made over fifty years ago). It covers how to select the insulation systems for use in new machines, and explains over thirty different rotor and stator winding failure processes, including the methods to repair, or least slow down, each process. Finally, it reviews the theoretical basis, practical application, and interpretation of forty different tests and monitors that are used to assess winding insulation condition, thereby helping machine users avoid unnecessary machine failures and reduce maintenance costs. Electrical Insulation for Rotating Machines: Documents the large array of machine electrical failure mechanisms, repair methods, and test techniques that are currently available Educates owners of machines as well as repair shops on the different failure processes and shows them how to fix or otherwise ameliorate them Offers chapters on testing, monitoring, and maintenance strategies that assist in educating machine users and repair shops on the tests needed for specific situations and how to minimize motor and generator maintenance costs Captures the state of both the present and past “art” in rotating machine insulation system design and manufacture, which helps designers learn from the knowledge acquired by previous generations An ideal read for researchers, developers, and manufacturers of electrical insulating materials for machines, Electrical Insulation for Rotating Machines will also benefit designers of motors and generators who must select and apply electrical insulation in machines.

Renewable Power for Sustainable Growth

Renewable Power for Sustainable Growth PDF Author: Hasmat Malik
Publisher: Springer Nature
ISBN: 981996749X
Category : Technology & Engineering
Languages : en
Pages : 1012

Get Book Here

Book Description
The proceedings is a collection of papers presented at International Conference on Renewal Power (ICRP 2023), held during 28 – 29 March 2023 in Mewat Engineering College, Nuh, India. The book covers different topics of renewal energy sources in modern power systems. The volume focusses on smart grid technologies and applications, renewable power systems including solar PV, solar thermal, wind, power generation, transmission and distribution, transportation electrification and automotive technologies, power electronics and applications in renewable power system, energy management and control system, energy storage in modern power system, active distribution network, artificial intelligence in renewable power systems, and cyber physical systems and internet of things in smart grid and renewable power.

Proceedings of 3rd International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication

Proceedings of 3rd International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication PDF Author: Anuradha Tomar
Publisher: Springer Nature
ISBN: 9811928282
Category : Technology & Engineering
Languages : en
Pages : 774

Get Book Here

Book Description
This book gathers selected papers presented at International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication (MARC 2021), held in Krishna Engineering College, Ghaziabad, India, during 10 – 11 December, 2021. This book discusses key concepts, challenges and potential solutions in connection with established and emerging topics in advanced computing, renewable energy and network communications.

Smart Grids and Buildings for Energy and Societal Transition

Smart Grids and Buildings for Energy and Societal Transition PDF Author: Benoît Robyns
Publisher: John Wiley & Sons
ISBN: 139431714X
Category : Science
Languages : en
Pages : 341

Get Book Here

Book Description
This book presents interdisciplinary approaches to help buildings, electrical energy networks and their users contribute to the energy and societal transition. Smart Grids and Buildings for Energy and Societal Transition examines the technologies, uses and imaginaries involved in implementing smart buildings and smart grids. Production and consumption forecasts, modeling of stakeholder involvement and self-consumption within a renewable energy community exploiting blockchain technology are examples developed with a view to fostering the emergence of smart grids. The potential of smart buildings, taking into account user comfort while increasing energy efficiency, is identified. Full-scale demonstrators are used to test the proposed solutions, and to ensure that users take full advantage of the potential for electrical flexibility.