Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent

Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Post combustion CO2 capture is most commonly carried out using an amine solution that results in a high parasitic energy cost in the stripper unit due to the need to heat the water which comprises a majority of the amine solution. It is also well known that amine solvents suffer from stability issues due to amine leaching and poisoning by flue gas impurities. Solid sorbents provide an alternative to solvent systems that would potentially reduce the energy penalty of carbon capture. However, the cost of using a particular sorbent is greatly affected by the usable lifetime of the sorbent. This work investigated the stability of a primary amine-functionalized ion exchange resin in the presence of O2 and SO2, both of which are constituents of flue gas that have been shown to cause degradation of various amines in solvent processes. The CO2 capture capacity was measured over multiple capture cycles under continuous exposure to two simulated flue gas streams, one containing 12 vol% CO2, 4% O2, 84% N2, and the other containing 12.5 vol% CO2, 4% O2, 431 ppm SO2, balance N2 using a custom-built packed bed reactor. The resin maintained its CO2 capture capacity of 1.31 mol/kg over 17 capture cycles in the presence of O2 without SO2. However, the CO2 capture capacity of the resin decreased rapidly under exposure to SO2 by an amount of 1.3 mol/kg over 9 capture cycles. Elemental analysis revealed the resin adsorbed 1.0 mol/kg of SO2. Thermal regeneration was determined to not be possible. The poisoned resin was, however, partially regenerated with exposure to 1.5M NaOH for 3 days resulting in a 43% removal of sulfur, determined through elemental analysis, and a 35% recovery of CO2 capture capacity. Evidence was also found for amine loss upon prolonged (7 days) continuous exposure to high temperatures (120 C) in air. It is concluded that desulfurization of the flue gas stream prior to CO2 capture will greatly improve the economic viability of using this solid sorbent in a post-combustion CO2 capture process.

Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent

Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Post combustion CO2 capture is most commonly carried out using an amine solution that results in a high parasitic energy cost in the stripper unit due to the need to heat the water which comprises a majority of the amine solution. It is also well known that amine solvents suffer from stability issues due to amine leaching and poisoning by flue gas impurities. Solid sorbents provide an alternative to solvent systems that would potentially reduce the energy penalty of carbon capture. However, the cost of using a particular sorbent is greatly affected by the usable lifetime of the sorbent. This work investigated the stability of a primary amine-functionalized ion exchange resin in the presence of O2 and SO2, both of which are constituents of flue gas that have been shown to cause degradation of various amines in solvent processes. The CO2 capture capacity was measured over multiple capture cycles under continuous exposure to two simulated flue gas streams, one containing 12 vol% CO2, 4% O2, 84% N2, and the other containing 12.5 vol% CO2, 4% O2, 431 ppm SO2, balance N2 using a custom-built packed bed reactor. The resin maintained its CO2 capture capacity of 1.31 mol/kg over 17 capture cycles in the presence of O2 without SO2. However, the CO2 capture capacity of the resin decreased rapidly under exposure to SO2 by an amount of 1.3 mol/kg over 9 capture cycles. Elemental analysis revealed the resin adsorbed 1.0 mol/kg of SO2. Thermal regeneration was determined to not be possible. The poisoned resin was, however, partially regenerated with exposure to 1.5M NaOH for 3 days resulting in a 43% removal of sulfur, determined through elemental analysis, and a 35% recovery of CO2 capture capacity. Evidence was also found for amine loss upon prolonged (7 days) continuous exposure to high temperatures (120 C) in air. It is concluded that desulfurization of the flue gas stream prior to CO2 capture will greatly improve the economic viability of using this solid sorbent in a post-combustion CO2 capture process.

Regenerable Sorbent Technique for Capturing CO.sub. 2 Using Immobilized Amine Sorbents

Regenerable Sorbent Technique for Capturing CO.sub. 2 Using Immobilized Amine Sorbents PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The disclosure provides a CO.sub. 2 absorption method using an amine-based solid sorbent for the removal of carbon dioxide from a gas stream. The method disclosed mitigates the impact of water loading on regeneration by utilizing a conditioner following the steam regeneration process, providing for a water loading on the amine-based solid sorbent following CO.sub. 2 absorption substantially equivalent to the moisture loading of the regeneration process. This assists in optimizing the CO.sub. 2 removal capacity of the amine-based solid sorbent for a given absorption and regeneration reactor size. Management of the water loading in this manner allows regeneration reactor operation with significant mitigation of energy losses incurred by the necessary desorption of adsorbed water.

Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications PDF Author: Hui Jiang
Publisher:
ISBN:
Category : Amines
Languages : en
Pages : 52

Get Book Here

Book Description
Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers.1 However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules.2,3 In contrast, AMH-3 has 3D microporous layers with 8 MB openings in the plane of the layers, as well as perpendicular to the layers, which are larger than CO2 molecules. Based on the structure differences between nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3, the latter might be more suitable for CO2 capturer application as an APN candidate material. However, none of the assumptions above have been approved experimentally. In this study, the influence of the amine loading on adsorption capacity and kinetics of adsorption for the mixed porosity material pillared MCM-22 (P) (also called MCM-36) is studied systematically, in order to determine a potential route to achieve a final material with both high amine loading and high adsorption capacity. We first synthesized MCM-22(P), followed by swelling and pillaring to create MCM-36. Polymeric amines such as polyethylenimine (PEI) are used as an organic component of the supported amine adsorbents, with varying polymer loadings within the adsorbents used. The kinetics and diffusion properties of carbon dioxide capture on a MCM-36 pillared material impregnated with amine containing Polyethylenimine polymers has been investigated. It was determined that the introduction of amine polymer cannot be used to improve the capture capacity of the support over that of the bare material, due to the fact that with the addition of a high loading of amine polymer the large pore diffusion channels become impossible for carbon dioxide molecules to diffuse through. This sets an upper limit to the capture capacity of polymer impregnated MCM-36 for carbon dioxide which does not surpass that for the initial bare material, and greatly reduces the utility of using this sort of amine-solid adsorbent for carbon capture plans in the future.

High Capacity Immobilized Amine Sorbents

High Capacity Immobilized Amine Sorbents PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A method is provided for making low-cost CO.sub. 2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub. 2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub. 2 capture systems.

Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO2 capture. The project objective was to address the viability and accelerate development of a solid-based CO2 capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO2 capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO2 removal with the sorbents evaluated under this program, it was useful to compare the CO2 removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO2 for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO2 removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO2 capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO2 uptake rate. Th ...

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The overall objective of the proposed research is to develop a low cost, high capacity CO2 sorbent and demonstrate its technical and economic viability for pre-combustion CO2 capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO2 partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO2 capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

Amine Enriched Solid Sorbents for Carbon Dioxide Capture

Amine Enriched Solid Sorbents for Carbon Dioxide Capture PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A new method for making low-cost CO.sub. 2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub. 2 capture systems.

Safety in Academic Chemistry Laboratories

Safety in Academic Chemistry Laboratories PDF Author: American Chemical Society. Committee on Chemical Safety
Publisher:
ISBN:
Category : Chemical laboratories
Languages : en
Pages : 76

Get Book Here

Book Description


Yvain

Yvain PDF Author: Chretien de Troyes
Publisher: Yale University Press
ISBN: 0300038380
Category : Poetry
Languages : en
Pages : 244

Get Book Here

Book Description
A twelfth-century poem by the creator of the Arthurian romance describes the courageous exploits and triumphs of a brave lord who tries to win back his deserted wife's love

Charles Pettigrew, First Bishop-elect of the North Carolina Episcopal Church

Charles Pettigrew, First Bishop-elect of the North Carolina Episcopal Church PDF Author: Bennett H Wall
Publisher: Hassell Street Press
ISBN: 9781015031500
Category :
Languages : en
Pages : 32

Get Book Here

Book Description
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.