Effect of Alloying Elements, Cold Work, and Hydrogen on the Irradiation-Induced Growth Behavior of Zirconium Alloy Variants

Effect of Alloying Elements, Cold Work, and Hydrogen on the Irradiation-Induced Growth Behavior of Zirconium Alloy Variants PDF Author: Suresh Yagnik
Publisher:
ISBN:
Category : Nuclear reactors
Languages : en
Pages : 48

Get Book Here

Book Description
In-reactor dimensional changes in zirconium-based alloys result from a complex interplay of many factors, such as (1) alloy type and composition, including the addition of elements such as niobium, iron, and tin; (2) fabrication process, including cold work, texture, and residual stresses; (3) irradiation temperature; and (4) hydrogen levels. In many cases, the observed dimensional changes in light water reactor fuel-assembly components--especially at high exposures--cannot be fully explained based on current growth and creep models. Therefore, a systematic approach was taken in this multiyear (2005-2011) Nuclear Fuel Industry Research Program investigation. The objective was to measure stress-free irradiation-induced growth (IIG) of specially fabricated alloys through irradiation under controlled conditions in the BOR-60 fast-flux test reactor up to a high fluence of approximately 2 x 1026 m-2 (E > 1 MeV)--equivalent to maximum of approximately 37 dpa exposure--followed by postirradiation examinations (PIEs). Irradiation temperature was within a narrow temperature range (320 ± 10°C). The PIEs included dimensional-change and microhardness measurements, metallography and hydride etching, and scanning transmission electron microscopy (STEM) or transmission electron microscopy (TEM).

Effect of Alloying Elements, Cold Work, and Hydrogen on the Irradiation-Induced Growth Behavior of Zirconium Alloy Variants

Effect of Alloying Elements, Cold Work, and Hydrogen on the Irradiation-Induced Growth Behavior of Zirconium Alloy Variants PDF Author: Suresh Yagnik
Publisher:
ISBN:
Category : Nuclear reactors
Languages : en
Pages : 48

Get Book Here

Book Description
In-reactor dimensional changes in zirconium-based alloys result from a complex interplay of many factors, such as (1) alloy type and composition, including the addition of elements such as niobium, iron, and tin; (2) fabrication process, including cold work, texture, and residual stresses; (3) irradiation temperature; and (4) hydrogen levels. In many cases, the observed dimensional changes in light water reactor fuel-assembly components--especially at high exposures--cannot be fully explained based on current growth and creep models. Therefore, a systematic approach was taken in this multiyear (2005-2011) Nuclear Fuel Industry Research Program investigation. The objective was to measure stress-free irradiation-induced growth (IIG) of specially fabricated alloys through irradiation under controlled conditions in the BOR-60 fast-flux test reactor up to a high fluence of approximately 2 x 1026 m-2 (E > 1 MeV)--equivalent to maximum of approximately 37 dpa exposure--followed by postirradiation examinations (PIEs). Irradiation temperature was within a narrow temperature range (320 ± 10°C). The PIEs included dimensional-change and microhardness measurements, metallography and hydride etching, and scanning transmission electron microscopy (STEM) or transmission electron microscopy (TEM).

Mechanical and Creep Behavior of Advanced Materials

Mechanical and Creep Behavior of Advanced Materials PDF Author: Indrajit Charit
Publisher: Springer
ISBN: 3319510975
Category : Technology & Engineering
Languages : en
Pages : 299

Get Book Here

Book Description
This collection commemorates the occasion of the honorary symposium that celebrated the 75th birthday and lifelong contributions of Professor K.L. Murty. The topics cover the present status and recent advances in research areas in which he made seminal contributions. The volume includes articles on a variety of topics such as high-temperature deformation behaviors of materials (elevated temperature creep, tensile, fatigue, superplasticity) and their micromechanistic interpretation, understanding mechanical behavior of HCP metals/alloys using crystallographic texture, radiation effects on deformation and creep of materials, mechanical behavior of nanostructured materials, fracture and fracture mechanisms, development and application of small-volume mechanical testing techniques, and general structure-property correlations.

Comprehensive Nuclear Materials

Comprehensive Nuclear Materials PDF Author:
Publisher: Elsevier
ISBN: 0081028660
Category : Science
Languages : en
Pages : 4871

Get Book Here

Book Description
Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field

Proceedings of the USAEC Symposium on Zirconium Alloy Development, Castlewood, Pleasanton, California, November 12-14, 1962

Proceedings of the USAEC Symposium on Zirconium Alloy Development, Castlewood, Pleasanton, California, November 12-14, 1962 PDF Author:
Publisher:
ISBN:
Category : Zirconium alloys
Languages : en
Pages : 428

Get Book Here

Book Description


The effect of cold-work and stress-relieving on the irradiation growth behaviour of zirconium alloys

The effect of cold-work and stress-relieving on the irradiation growth behaviour of zirconium alloys PDF Author: V. Fidleris
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Irradiation Growth of Zirconium Alloys

Irradiation Growth of Zirconium Alloys PDF Author: JY. Ren
Publisher:
ISBN:
Category : Irradiation
Languages : en
Pages : 8

Get Book Here

Book Description
Experimental investigation of irradiation growth on annealed Zircaloy-4 and 20% to 50% cold-worked Zr-2.5wt%Nb specimens with stress relief has been carried out. The specimens are irradiated in a heavy water reactor at 610 K to 4.2 x 1024 n/m2 (E > 1.0 MeV). The growth strains increase linearly with fluence. The saturation of growth is not observed for all specimens. The difference of growth behavior between two kinds of Zircaloy-4 tube may be associated with the content of minor alloying elements and impurities that influence the microstructure evolution under irradiation.

The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components

The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components PDF Author: Manfred P. Puls
Publisher: Springer Science & Business Media
ISBN: 1447141954
Category : Science
Languages : en
Pages : 475

Get Book Here

Book Description
By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the emphasis lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals. This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing how our understanding of DHC is supported by progress in general understanding of such broad fields as the study of hysteresis associated with first order phase transformations, phase relationships in coherent crystalline metallic solids, the physics of point and line defects, diffusion of substitutional and interstitial atoms in crystalline solids, and continuum fracture and solid mechanics. Furthermore, an account of current methodologies is given illustrating how such understanding of hydrogen, hydrides and DHC in zirconium alloys underpins these methodologies for assessments of real life cases in the Canadian nuclear industry. The all-encompassing approach makes The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Component: Delayed Hydride Cracking an ideal reference source for students, researchers and industry professionals alike.

Zirconium in the Nuclear Industry

Zirconium in the Nuclear Industry PDF Author: Gerry D. Moan
Publisher: ASTM International
ISBN: 0803128959
Category : Nuclear fuel claddings
Languages : en
Pages : 891

Get Book Here

Book Description
Annotation The 41 papers of this proceedings volume were first presented at the 13th symposium on Zirconium in the Nuclear Industry held in Annecy, France in June of 2001. Many of the papers are devoted to material related issues, corrosion and hydriding behavior, in-reactor studies, and the behavior and properties of Zr alloys used in storing spent fuel. Some papers report on studies of second phase particles, irradiation creep and growth, and material performance during loss of coolant and reactivity initiated accidents. Annotation copyrighted by Book News, Inc., Portland, OR.

Specific Zirconium Alloy Design Program Quarterly Progress Report

Specific Zirconium Alloy Design Program Quarterly Progress Report PDF Author:
Publisher:
ISBN:
Category : Nuclear reactors
Languages : en
Pages : 128

Get Book Here

Book Description


Effect of Hydrogen on Irradiation Creep and Growth for ZIRLO Alloy and Zr-1.0Nb

Effect of Hydrogen on Irradiation Creep and Growth for ZIRLO Alloy and Zr-1.0Nb PDF Author: John Paul Foster
Publisher:
ISBN:
Category : Irradiation
Languages : en
Pages : 23

Get Book Here

Book Description
The impact of hydrogen on the irradiation growth and creep of stress-relief annealed (SRA) ZIRLO® alloy and recrystallized annealed (RXA) Zr-1.0Nb cladding tubes is evaluated in this paper. The samples were charged with hydrogen in the range of approximately 160-720 ppm using the gaseous method. Biaxial in-reactor creep tests were performed after Cycle 1, Cycle 2, Cycle 3, and Cycle 4, on both as-received and precharged hydrogen cladding tubes. Outside diameter and axial length measurements were performed on the samples. The results showed that hydrogen had no effect on the axial irradiation creep but a relatively large effect on the axial irradiation growth. Increasing hydrogen decreased the axial irradiation growth in RXA Zr-1.0 Nb, which was opposite from the behavior of SRA ZIRLO cladding. This unique hydrogen effect on the irradiation axial growth of RXA Zr-1.0Nb could be due to the different intergranular stress resulting from the fabrication process or the absence of alloying elements, including tin. The total axial strain of both Zr-1.0Nb and SRA ZIRLO cladding increased with increasing fast fluence, and Zr-1.0Nb increased at a faster rate relative to SRA ZIRLO cladding. In the diameter direction, hydrogen had a minimal effect on the total diameter strain and the diameter irradiation creep strain for both SRA ZIRLO samples and the RXA Zr-1.0Nb sample. This finding from in-reactor test is contrary to the out-reactor tests results from the literature that have shown that hydrogen significantly decreases thermal creep. The total diameter strain and diameter irradiation creep behavior for the SRA ZIRLO samples and RXA Zr-1.0Nb were similar.