ECR (electron Cyclotron Resonance) Ion Sources and Applications with Heavy-ion Linacs

ECR (electron Cyclotron Resonance) Ion Sources and Applications with Heavy-ion Linacs PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
The electron cyclotron resonance (ECR) ion source has been developed in the last few years into a reliable source of high charge-state heavy ions. The availability of heavy ions with relatively large charge-to-mass ratios (0.1--0.5) has made it possible to contemplate essentially new classes of heavy-ion linear accelerators. In this talk, I shall review the state-of-the-art in ECR source performance and describe some of the implications this performance level has for heavy-ion linear accelerator design. The present linear accelerator projects using ECR ion sources will be noted and the performance requirements of the ECR source for these projects will be reviewed. 30 refs., 3 figs.

ECR (electron Cyclotron Resonance) Ion Sources and Applications with Heavy-ion Linacs

ECR (electron Cyclotron Resonance) Ion Sources and Applications with Heavy-ion Linacs PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
The electron cyclotron resonance (ECR) ion source has been developed in the last few years into a reliable source of high charge-state heavy ions. The availability of heavy ions with relatively large charge-to-mass ratios (0.1--0.5) has made it possible to contemplate essentially new classes of heavy-ion linear accelerators. In this talk, I shall review the state-of-the-art in ECR source performance and describe some of the implications this performance level has for heavy-ion linear accelerator design. The present linear accelerator projects using ECR ion sources will be noted and the performance requirements of the ECR source for these projects will be reviewed. 30 refs., 3 figs.

ECR [ELECTRON CYCLOTRON RESONANCE] ION SOURCES AND APPLICATIONS WITH HEAVY-ION LINACS.

ECR [ELECTRON CYCLOTRON RESONANCE] ION SOURCES AND APPLICATIONS WITH HEAVY-ION LINACS. PDF Author: R.C. PARDO
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Electron Cyclotron Resonance Ion Sources

Electron Cyclotron Resonance Ion Sources PDF Author: Matthaeus Leitner
Publisher: American Institute of Physics
ISBN:
Category : Science
Languages : en
Pages : 288

Get Book Here

Book Description
Berkeley, California, 26-30 September 2004

Electron Cyclotron Resonance Ion Sources and ECR Plasmas

Electron Cyclotron Resonance Ion Sources and ECR Plasmas PDF Author: R Geller
Publisher: Routledge
ISBN: 1351453238
Category : Science
Languages : en
Pages : 449

Get Book Here

Book Description
Acknowledged as the "founding father" of and world renowned expert on electron cyclotron resonance sources Richard Geller has produced a unique book devoted to the physics and technicalities of electron cyclotron resonance sources. Electron Cyclotron Resonance Ion Sources and ECR Plasmas provides a primer on electron cyclotron phenomena in ion sour

An Overview of LINAC Ion Sources

An Overview of LINAC Ion Sources PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This paper discusses ion sources used in high-duty-factor proton and H− Linacs as well as in accelerators utilizing multi-charged heavy ions, mostly for nuclear physics applications. The included types are Electron Cyclotron Resonance (ECR) sources as well as filament and rf driven multicusp sources. The paper does not strive to attain encyclopedic character but rather to highlight major lines of development, peak performance parameters and type-specific limitations and problems of these sources. The main technical aspects being discussed are particle feed, plasma generation and ion production by discharges, and plasma confinement.

ECR (Electron Cyclotron Resonance) Ion Sources for Cyclotrons

ECR (Electron Cyclotron Resonance) Ion Sources for Cyclotrons PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

ECR (Electron Cyclotron Resonance) Source for the HHIRF (Holifield Heavy Ion Research Facility) Tandem Accelerator

ECR (Electron Cyclotron Resonance) Source for the HHIRF (Holifield Heavy Ion Research Facility) Tandem Accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
Electron Cyclotron Resonance, ECR, ion source technology has developed rapidly since the original pioneering work of R. Geller and his group at Grenoble in the early 1970s. These ion sources are capable of producing intense beams of highly charged positive ions and are used extensively for cyclotron injection, linac injection, and atomic physics research. In this paper, the advantages of using an ECR heavy-ion source in the terminal of the Holifield Heavy Ion Research Facility (HHIRF) 25-MV tandem accelerator is discussed. A possible ECR system for installation in the HHIRF tandem terminal is described.

ECR Sources for the Production of Highly Charged Ions

ECR Sources for the Production of Highly Charged Ions PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 13

Get Book Here

Book Description
Electron Cyclotron Resonance Ion Sources (ECRIS) using RF between 5 and 16 GHz have been developed into stable, reliable sources of highly charged ions produced from a wide range of elements. These devices are currently used as ion sources for cyclotrons, synchrotrons, and heavy-ion linacs for nuclear and relativistic heavy-ion physics. They also serve the atomic physics community as a source of low energy multiply-charged ions. In order to improve their performance both with respect to maximum charge state and beam intensity, ECRIS builders are now designing and constructing sources which will operate at frequencies up to 30 GHz. In this paper we review the present status of operating ECRIS, review recent experimental measurements on plasma parameters, and look at the technology and potential of sources operating at frequencies up to 30 GHz. 14 refs., 4 figs., 1 tab.

Status of ECR (Electron Cyclotron Resonance) Source Technology

Status of ECR (Electron Cyclotron Resonance) Source Technology PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
ECR (Electron Cyclotron Resonance) ion sources are now in widespread use for the production of high quality multiply charged ion beams for accelerators and atomic physics experiments, and industrial applications are being explored. Several general characteristics of ECR sources explain their widespread acceptance. For use with cyclotrons which require CW multiply charged ion beams, the ECR source has many advantages over heavy-ion PIG sources. Most important is the ability to produce higher charge states at useful intensities for nuclear physics experiments. Since the maximum energy set by the bending limit of a cyclotron scales with the square of the charge state, the installation of ECR sources on cyclotrons has provided an economical path to raise the energy. Another characteristic of ECR sources is that the discharge is produced without cathodes, so that only the source material injected into an ECR source is consumed. As a result, ECR sources can be operated continuously for periods of weeks without interruption. Techniques have been developed in the last few years, which allow these sources to produce beams from solid materials. The beam emittance from ECR sources is in the range of 50 to 200 .pi. mm-mrad at 10 kV. The principles of ECR ion sources are discussed, and present and future ECR sources are reviewed.

Characterization of Electron Cyclotron Resonance Ion Source Instabilities by Charged Particle Diagnostics

Characterization of Electron Cyclotron Resonance Ion Source Instabilities by Charged Particle Diagnostics PDF Author: Bryan Isherwood
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 224

Get Book Here

Book Description
Ion sources are invaluable tools for producing charge particles for scientific, industrial, and medical applications. In particular, Electron Cyclotron Resonance (ECR) ion sources (ECRIS) are high power sources capable of producing high intensity, high charge state beams of heavy ions. The system uses microwaves to resonantly heat of electrons within an inhomogeneous magnetic trap. However, the internal dynamics of the resulting plasma are complex and poorly understood. In particular, the excitation of kinetic instabilities within the plasma can make operating these ion sources difficult and unpredictable. This thesis focuses on studying these instabilities to determine ways to optimize ECRIS performance by minimizing their impact on the extracted beam current.This study focuses on two measurements that look at the steady-state and time-resolved measurements of charged particle currents escaping the ion source during stable and unstable operations. The first measurement is a novel diagnostic of electrons escaping confinement from the plasma chamber. The second was a measurement of high charge state ions (Ar8+) extracted from the plasma chamber over a broad set of parameter spaces. These measurements provide insight into the ideal operating conditions for an ECR ion source and the dynamics of the ion and electron populations within its plasma.