Dynamics of Evolutionary Equations

Dynamics of Evolutionary Equations PDF Author: George R. Sell
Publisher: Springer Science & Business Media
ISBN: 1475750374
Category : Mathematics
Languages : en
Pages : 680

Get Book Here

Book Description
The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. This book serves as an entrée for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations.

Dynamics of Evolutionary Equations

Dynamics of Evolutionary Equations PDF Author: George R. Sell
Publisher: Springer Science & Business Media
ISBN: 1475750374
Category : Mathematics
Languages : en
Pages : 680

Get Book Here

Book Description
The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. This book serves as an entrée for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations.

Evolutionary Dynamics

Evolutionary Dynamics PDF Author: Martin A. Nowak
Publisher: Harvard University Press
ISBN: 0674417755
Category : Science
Languages : en
Pages : 390

Get Book Here

Book Description
At a time of unprecedented expansion in the life sciences, evolution is the one theory that transcends all of biology. Any observation of a living system must ultimately be interpreted in the context of its evolution. Evolutionary change is the consequence of mutation and natural selection, which are two concepts that can be described by mathematical equations. Evolutionary Dynamics is concerned with these equations of life. In this book, Martin A. Nowak draws on the languages of biology and mathematics to outline the mathematical principles according to which life evolves. His work introduces readers to the powerful yet simple laws that govern the evolution of living systems, no matter how complicated they might seem. Evolution has become a mathematical theory, Nowak suggests, and any idea of an evolutionary process or mechanism should be studied in the context of the mathematical equations of evolutionary dynamics. His book presents a range of analytical tools that can be used to this end: fitness landscapes, mutation matrices, genomic sequence space, random drift, quasispecies, replicators, the Prisoner’s Dilemma, games in finite and infinite populations, evolutionary graph theory, games on grids, evolutionary kaleidoscopes, fractals, and spatial chaos. Nowak then shows how evolutionary dynamics applies to critical real-world problems, including the progression of viral diseases such as AIDS, the virulence of infectious agents, the unpredictable mutations that lead to cancer, the evolution of altruism, and even the evolution of human language. His book makes a clear and compelling case for understanding every living system—and everything that arises as a consequence of living systems—in terms of evolutionary dynamics.

Evolutionary Equations with Applications in Natural Sciences

Evolutionary Equations with Applications in Natural Sciences PDF Author: Jacek Banasiak
Publisher: Springer
ISBN: 3319113224
Category : Mathematics
Languages : en
Pages : 505

Get Book Here

Book Description
With the unifying theme of abstract evolutionary equations, both linear and nonlinear, in a complex environment, the book presents a multidisciplinary blend of topics, spanning the fields of theoretical and applied functional analysis, partial differential equations, probability theory and numerical analysis applied to various models coming from theoretical physics, biology, engineering and complexity theory. Truly unique features of the book are: the first simultaneous presentation of two complementary approaches to fragmentation and coagulation problems, by weak compactness methods and by using semigroup techniques, comprehensive exposition of probabilistic methods of analysis of long term dynamics of dynamical systems, semigroup analysis of biological problems and cutting edge pattern formation theory. The book will appeal to postgraduate students and researchers specializing in applications of mathematics to problems arising in natural sciences and engineering.

Population Games and Evolutionary Dynamics

Population Games and Evolutionary Dynamics PDF Author: William H. Sandholm
Publisher: MIT Press
ISBN: 0262195879
Category : Business & Economics
Languages : en
Pages : 618

Get Book Here

Book Description
Evolutionary game theory studies the behaviour of large populations of strategically interacting agents & is used by economists to predict in settings where traditional assumptions about the rationality of agents & knowledge may be inapplicable.

Evolutionary Games and Population Dynamics

Evolutionary Games and Population Dynamics PDF Author: Josef Hofbauer
Publisher: Cambridge University Press
ISBN: 9780521625708
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
Every form of behaviour is shaped by trial and error. Such stepwise adaptation can occur through individual learning or through natural selection, the basis of evolution. Since the work of Maynard Smith and others, it has been realised how game theory can model this process. Evolutionary game theory replaces the static solutions of classical game theory by a dynamical approach centred not on the concept of rational players but on the population dynamics of behavioural programmes. In this book the authors investigate the nonlinear dynamics of the self-regulation of social and economic behaviour, and of the closely related interactions between species in ecological communities. Replicator equations describe how successful strategies spread and thereby create new conditions which can alter the basis of their success, i.e. to enable us to understand the strategic and genetic foundations of the endless chronicle of invasions and extinctions which punctuate evolution. In short, evolutionary game theory describes when to escalate a conflict, how to elicit cooperation, why to expect a balance of the sexes, and how to understand natural selection in mathematical terms.

Von Karman Evolution Equations

Von Karman Evolution Equations PDF Author: Igor Chueshov
Publisher: Springer
ISBN: 9781461425915
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
In the study of mathematical models that arise in the context of concrete - plications, the following two questions are of fundamental importance: (i) we- posedness of the model, including existence and uniqueness of solutions; and (ii) qualitative properties of solutions. A positive answer to the ?rst question, - ing of prime interest on purely mathematical grounds, also provides an important test of the viability of the model as a description of a given physical phenomenon. An answer or insight to the second question provides a wealth of information about the model, hence about the process it describes. Of particular interest are questions related to long-time behavior of solutions. Such an evolution property cannot be v- i?ed empirically, thus any in a-priori information about the long-time asymptotics can be used in predicting an ultimate long-time response and dynamical behavior of solutions. In recent years, this set of investigations has attracted a great deal of attention. Consequent efforts have then resulted in the creation and infusion of new methods and new tools that have been responsible for carrying out a successful an- ysis of long-time behavior of several classes of nonlinear PDEs.

Evolutionary Game Dynamics

Evolutionary Game Dynamics PDF Author: American Mathematical Society. Short Course
Publisher: American Mathematical Soc.
ISBN: 0821853260
Category : Mathematics
Languages : en
Pages : 186

Get Book Here

Book Description
This volume is based on lectures delivered at the 2011 AMS Short Course on Evolutionary Game Dynamics, held January 4-5, 2011 in New Orleans, Louisiana. Evolutionary game theory studies basic types of social interactions in populations of players. It combines the strategic viewpoint of classical game theory (independent rational players trying to outguess each other) with population dynamics (successful strategies increase their frequencies). A substantial part of the appeal of evolutionary game theory comes from its highly diverse applications such as social dilemmas, the evolution of language, or mating behaviour in animals. Moreover, its methods are becoming increasingly popular in computer science, engineering, and control theory. They help to design and control multi-agent systems, often with a large number of agents (for instance, when routing drivers over highway networks or data packets over the Internet). While these fields have traditionally used a top down approach by directly controlling the behaviour of each agent in the system, attention has recently turned to an indirect approach allowing the agents to function independently while providing incentives that lead them to behave in the desired way. Instead of the traditional assumption of equilibrium behaviour, researchers opt increasingly for the evolutionary paradigm and consider the dynamics of behaviour in populations of agents employing simple, myopic decision rules.

Attractors of Evolution Equations

Attractors of Evolution Equations PDF Author: A.V. Babin
Publisher: Elsevier
ISBN: 0080875467
Category : Mathematics
Languages : en
Pages : 543

Get Book Here

Book Description
Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.

One-Parameter Semigroups for Linear Evolution Equations

One-Parameter Semigroups for Linear Evolution Equations PDF Author: Klaus-Jochen Engel
Publisher: Springer Science & Business Media
ISBN: 0387226427
Category : Mathematics
Languages : en
Pages : 609

Get Book Here

Book Description
This book explores the theory of strongly continuous one-parameter semigroups of linear operators. A special feature of the text is an unusually wide range of applications such as to ordinary and partial differential operators, to delay and Volterra equations, and to control theory. Also, the book places an emphasis on philosophical motivation and the historical background.

Effective Dynamics of Stochastic Partial Differential Equations

Effective Dynamics of Stochastic Partial Differential Equations PDF Author: Jinqiao Duan
Publisher: Elsevier
ISBN: 0128012692
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension. - New techniques for extracting effective dynamics of infinite dimensional dynamical systems under uncertainty - Accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations - Solutions or hints to all Exercises