Author: Michael A. Arbib
Publisher: Springer Science & Business Media
ISBN: 1461245362
Category : Computers
Languages : en
Pages : 275
Book Description
This is an exciting time. The study of neural networks is enjoying a great renaissance, both in computational neuroscience - the development of information processing models of living brains - and in neural computing - the use of neurally inspired concepts in the construction of "intelligent" machines. Thus the title of this volume, Dynamic Interactions in Neural Networks: Models and Data can be given two interpretations. We present models and data on the dynamic interactions occurring in the brain, and we also exhibit the dynamic interactions between research in computational neuroscience and in neural computing, as scientists seek to find common principles that may guide us in the understanding of our own brains and in the design of artificial neural networks. In fact, the book title has yet a third interpretation. It is based on the U. S. -Japan Seminar on "Competition and Cooperation in Neural Nets" which we organized at the University of Southern California, Los Angeles, May 18-22, 1987, and is thus the record of interaction of scientists on both sides of the Pacific in advancing the frontiers of this dynamic, re-born field. The book focuses on three major aspects of neural network function: learning, perception, and action. More specifically, the chapters are grouped under three headings: "Development and Learning in Adaptive Networks," "Visual Function", and "Motor Control and the Cerebellum.
Dynamic Interactions in Neural Networks: Models and Data
Author: Michael A. Arbib
Publisher: Springer Science & Business Media
ISBN: 1461245362
Category : Computers
Languages : en
Pages : 275
Book Description
This is an exciting time. The study of neural networks is enjoying a great renaissance, both in computational neuroscience - the development of information processing models of living brains - and in neural computing - the use of neurally inspired concepts in the construction of "intelligent" machines. Thus the title of this volume, Dynamic Interactions in Neural Networks: Models and Data can be given two interpretations. We present models and data on the dynamic interactions occurring in the brain, and we also exhibit the dynamic interactions between research in computational neuroscience and in neural computing, as scientists seek to find common principles that may guide us in the understanding of our own brains and in the design of artificial neural networks. In fact, the book title has yet a third interpretation. It is based on the U. S. -Japan Seminar on "Competition and Cooperation in Neural Nets" which we organized at the University of Southern California, Los Angeles, May 18-22, 1987, and is thus the record of interaction of scientists on both sides of the Pacific in advancing the frontiers of this dynamic, re-born field. The book focuses on three major aspects of neural network function: learning, perception, and action. More specifically, the chapters are grouped under three headings: "Development and Learning in Adaptive Networks," "Visual Function", and "Motor Control and the Cerebellum.
Publisher: Springer Science & Business Media
ISBN: 1461245362
Category : Computers
Languages : en
Pages : 275
Book Description
This is an exciting time. The study of neural networks is enjoying a great renaissance, both in computational neuroscience - the development of information processing models of living brains - and in neural computing - the use of neurally inspired concepts in the construction of "intelligent" machines. Thus the title of this volume, Dynamic Interactions in Neural Networks: Models and Data can be given two interpretations. We present models and data on the dynamic interactions occurring in the brain, and we also exhibit the dynamic interactions between research in computational neuroscience and in neural computing, as scientists seek to find common principles that may guide us in the understanding of our own brains and in the design of artificial neural networks. In fact, the book title has yet a third interpretation. It is based on the U. S. -Japan Seminar on "Competition and Cooperation in Neural Nets" which we organized at the University of Southern California, Los Angeles, May 18-22, 1987, and is thus the record of interaction of scientists on both sides of the Pacific in advancing the frontiers of this dynamic, re-born field. The book focuses on three major aspects of neural network function: learning, perception, and action. More specifically, the chapters are grouped under three headings: "Development and Learning in Adaptive Networks," "Visual Function", and "Motor Control and the Cerebellum.
Dynamic Interactions in Neural Networks
Author: Shun'ichi Amari
Publisher:
ISBN: 9787506212717
Category : Neural computers
Languages : en
Pages : 280
Book Description
Publisher:
ISBN: 9787506212717
Category : Neural computers
Languages : en
Pages : 280
Book Description
Dynamic Interactions in Neural Networks
Author: Michael A Arbib
Publisher:
ISBN: 9781461245377
Category :
Languages : en
Pages : 292
Book Description
Publisher:
ISBN: 9781461245377
Category :
Languages : en
Pages : 292
Book Description
Graph Neural Networks: Foundations, Frontiers, and Applications
Author: Lingfei Wu
Publisher: Springer Nature
ISBN: 9811660549
Category : Computers
Languages : en
Pages : 701
Book Description
Deep Learning models are at the core of artificial intelligence research today. It is well known that deep learning techniques are disruptive for Euclidean data, such as images or sequence data, and not immediately applicable to graph-structured data such as text. This gap has driven a wave of research for deep learning on graphs, including graph representation learning, graph generation, and graph classification. The new neural network architectures on graph-structured data (graph neural networks, GNNs in short) have performed remarkably on these tasks, demonstrated by applications in social networks, bioinformatics, and medical informatics. Despite these successes, GNNs still face many challenges ranging from the foundational methodologies to the theoretical understandings of the power of the graph representation learning. This book provides a comprehensive introduction of GNNs. It first discusses the goals of graph representation learning and then reviews the history, current developments, and future directions of GNNs. The second part presents and reviews fundamental methods and theories concerning GNNs while the third part describes various frontiers that are built on the GNNs. The book concludes with an overview of recent developments in a number of applications using GNNs. This book is suitable for a wide audience including undergraduate and graduate students, postdoctoral researchers, professors and lecturers, as well as industrial and government practitioners who are new to this area or who already have some basic background but want to learn more about advanced and promising techniques and applications.
Publisher: Springer Nature
ISBN: 9811660549
Category : Computers
Languages : en
Pages : 701
Book Description
Deep Learning models are at the core of artificial intelligence research today. It is well known that deep learning techniques are disruptive for Euclidean data, such as images or sequence data, and not immediately applicable to graph-structured data such as text. This gap has driven a wave of research for deep learning on graphs, including graph representation learning, graph generation, and graph classification. The new neural network architectures on graph-structured data (graph neural networks, GNNs in short) have performed remarkably on these tasks, demonstrated by applications in social networks, bioinformatics, and medical informatics. Despite these successes, GNNs still face many challenges ranging from the foundational methodologies to the theoretical understandings of the power of the graph representation learning. This book provides a comprehensive introduction of GNNs. It first discusses the goals of graph representation learning and then reviews the history, current developments, and future directions of GNNs. The second part presents and reviews fundamental methods and theories concerning GNNs while the third part describes various frontiers that are built on the GNNs. The book concludes with an overview of recent developments in a number of applications using GNNs. This book is suitable for a wide audience including undergraduate and graduate students, postdoctoral researchers, professors and lecturers, as well as industrial and government practitioners who are new to this area or who already have some basic background but want to learn more about advanced and promising techniques and applications.
Advances in Cognitive Neurodynamics (VII)
Author: Alessandra Lintas
Publisher: Springer Nature
ISBN: 9811603170
Category : Medical
Languages : en
Pages : 279
Book Description
This book contains original articles submitted to the Seventh International Conference on Cognitive Neurodynamics (ICCN 2019). The brain is an endless case study of a complex system characterized by multiple levels of integration, multiple time scales of activity, and multiple coding and decoding properties. The contribution of several disciplines, mathematics, physics, computer science, neurobiology, pharmacology, physiology, and behavioral and clinical sciences, is necessary in order to cope with such seemingly unattainable complexity that transforms the experimental information into a tricky puzzle which hides the correspondence with model predictions. This conference gathered active participants to discuss ideas and pose new questions from different viewpoints, ranging from single neurons and neural networks to animal/human behavior in theoretical and experimental studies. The conference is organized with plenary lectures, mini-symposia, interdisciplinary round tables, and oral and poster sessions.
Publisher: Springer Nature
ISBN: 9811603170
Category : Medical
Languages : en
Pages : 279
Book Description
This book contains original articles submitted to the Seventh International Conference on Cognitive Neurodynamics (ICCN 2019). The brain is an endless case study of a complex system characterized by multiple levels of integration, multiple time scales of activity, and multiple coding and decoding properties. The contribution of several disciplines, mathematics, physics, computer science, neurobiology, pharmacology, physiology, and behavioral and clinical sciences, is necessary in order to cope with such seemingly unattainable complexity that transforms the experimental information into a tricky puzzle which hides the correspondence with model predictions. This conference gathered active participants to discuss ideas and pose new questions from different viewpoints, ranging from single neurons and neural networks to animal/human behavior in theoretical and experimental studies. The conference is organized with plenary lectures, mini-symposia, interdisciplinary round tables, and oral and poster sessions.
Neuronal Dynamics
Author: Wulfram Gerstner
Publisher: Cambridge University Press
ISBN: 1107060834
Category : Computers
Languages : en
Pages : 591
Book Description
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Publisher: Cambridge University Press
ISBN: 1107060834
Category : Computers
Languages : en
Pages : 591
Book Description
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
The Principles of Deep Learning Theory
Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473
Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473
Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Dynamics of Neural Networks
Author: Michel J.A.M. van Putten
Publisher: Springer Nature
ISBN: 3662611848
Category : Science
Languages : en
Pages : 259
Book Description
This book treats essentials from neurophysiology (Hodgkin–Huxley equations, synaptic transmission, prototype networks of neurons) and related mathematical concepts (dimensionality reductions, equilibria, bifurcations, limit cycles and phase plane analysis). This is subsequently applied in a clinical context, focusing on EEG generation, ischaemia, epilepsy and neurostimulation. The book is based on a graduate course taught by clinicians and mathematicians at the Institute of Technical Medicine at the University of Twente. Throughout the text, the author presents examples of neurological disorders in relation to applied mathematics to assist in disclosing various fundamental properties of the clinical reality at hand. Exercises are provided at the end of each chapter; answers are included. Basic knowledge of calculus, linear algebra, differential equations and familiarity with MATLAB or Python is assumed. Also, students should have some understanding of essentials of (clinical) neurophysiology, although most concepts are summarized in the first chapters. The audience includes advanced undergraduate or graduate students in Biomedical Engineering, Technical Medicine and Biology. Applied mathematicians may find pleasure in learning about the neurophysiology and clinic essentials applications. In addition, clinicians with an interest in dynamics of neural networks may find this book useful, too.
Publisher: Springer Nature
ISBN: 3662611848
Category : Science
Languages : en
Pages : 259
Book Description
This book treats essentials from neurophysiology (Hodgkin–Huxley equations, synaptic transmission, prototype networks of neurons) and related mathematical concepts (dimensionality reductions, equilibria, bifurcations, limit cycles and phase plane analysis). This is subsequently applied in a clinical context, focusing on EEG generation, ischaemia, epilepsy and neurostimulation. The book is based on a graduate course taught by clinicians and mathematicians at the Institute of Technical Medicine at the University of Twente. Throughout the text, the author presents examples of neurological disorders in relation to applied mathematics to assist in disclosing various fundamental properties of the clinical reality at hand. Exercises are provided at the end of each chapter; answers are included. Basic knowledge of calculus, linear algebra, differential equations and familiarity with MATLAB or Python is assumed. Also, students should have some understanding of essentials of (clinical) neurophysiology, although most concepts are summarized in the first chapters. The audience includes advanced undergraduate or graduate students in Biomedical Engineering, Technical Medicine and Biology. Applied mathematicians may find pleasure in learning about the neurophysiology and clinic essentials applications. In addition, clinicians with an interest in dynamics of neural networks may find this book useful, too.
Dynamical Systems in Neuroscience
Author: Eugene M. Izhikevich
Publisher: MIT Press
ISBN: 0262514206
Category : Medical
Languages : en
Pages : 459
Book Description
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Publisher: MIT Press
ISBN: 0262514206
Category : Medical
Languages : en
Pages : 459
Book Description
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Current Catalog
Author: National Library of Medicine (U.S.)
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1024
Book Description
First multi-year cumulation covers six years: 1965-70.
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1024
Book Description
First multi-year cumulation covers six years: 1965-70.