Author: Andrew D. Bates
Publisher: Oxford University Press, USA
ISBN: 9780198567097
Category : Science
Languages : en
Pages : 224
Book Description
"A key aspect of DNA is its ability to form a variety of structures, this book explains the origins and importance of such structures"--Provided by publisher.
DNA Topology
Author: Andrew D. Bates
Publisher: Oxford University Press, USA
ISBN: 9780198567097
Category : Science
Languages : en
Pages : 224
Book Description
"A key aspect of DNA is its ability to form a variety of structures, this book explains the origins and importance of such structures"--Provided by publisher.
Publisher: Oxford University Press, USA
ISBN: 9780198567097
Category : Science
Languages : en
Pages : 224
Book Description
"A key aspect of DNA is its ability to form a variety of structures, this book explains the origins and importance of such structures"--Provided by publisher.
DNA Topoisomerase Protocols
Author: Mary-Ann Bjornsti
Publisher: Springer Science & Business Media
ISBN:
Category : Medical
Languages : en
Pages : 352
Book Description
DNA Topoisomerase Protocols, I: DNA Topology and Enzymes brings together an unprecedented collection of cutting-edge experimental protocols for investigating DNA structure, topology, and DNA topoisomerase function. Described by expert experimentalists who have perfected the techniques, these unfailingly reproducible methods utilize new approaches to study changes in DNA topology (linking number, knotting, catenation, and relaxation) and DNA structure (bending), as well as to assess chromosome structure through FLP-mediated recombination and to analyze bacterial nucleoid structure. State-of-the-art protocols also detail the expression and purification of bacterial, viral, and eukaryotic DNA topoisomerases from a variety of sources, including baculovirus, and bacterial, yeast and mammalian expression systems. A companion volume, DNA Topoisomerase Protocols, v. 2: Enzymology and Drugs, provides detailed protocols to study the catalytic activities of DNA topoisomerases, as well as their specific interactions with topoisomerase-targeted antitumor and antibacterial drugs. DNA Topoisomerase Protocols, I: DNA Topology and Enzymes will be of immense value to the many basic scientists and clinicians who want better to understand and to exploit proficiently the wealth of recent discoveries about chromatin structure and its relation to gene expression, about DNA topoisomerases as the targets of antitumor and antibacterial agents, and about DNA repair.
Publisher: Springer Science & Business Media
ISBN:
Category : Medical
Languages : en
Pages : 352
Book Description
DNA Topoisomerase Protocols, I: DNA Topology and Enzymes brings together an unprecedented collection of cutting-edge experimental protocols for investigating DNA structure, topology, and DNA topoisomerase function. Described by expert experimentalists who have perfected the techniques, these unfailingly reproducible methods utilize new approaches to study changes in DNA topology (linking number, knotting, catenation, and relaxation) and DNA structure (bending), as well as to assess chromosome structure through FLP-mediated recombination and to analyze bacterial nucleoid structure. State-of-the-art protocols also detail the expression and purification of bacterial, viral, and eukaryotic DNA topoisomerases from a variety of sources, including baculovirus, and bacterial, yeast and mammalian expression systems. A companion volume, DNA Topoisomerase Protocols, v. 2: Enzymology and Drugs, provides detailed protocols to study the catalytic activities of DNA topoisomerases, as well as their specific interactions with topoisomerase-targeted antitumor and antibacterial drugs. DNA Topoisomerase Protocols, I: DNA Topology and Enzymes will be of immense value to the many basic scientists and clinicians who want better to understand and to exploit proficiently the wealth of recent discoveries about chromatin structure and its relation to gene expression, about DNA topoisomerases as the targets of antitumor and antibacterial agents, and about DNA repair.
Topology in Molecular Biology
Author: Michael I. Monastyrsky
Publisher: Springer Science & Business Media
ISBN: 3540498583
Category : Science
Languages : en
Pages : 238
Book Description
Providing a course of modern topology intended for biologists and physicists, this book presents a class of results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods; the structure of proteins; and other problems in molecular biology.
Publisher: Springer Science & Business Media
ISBN: 3540498583
Category : Science
Languages : en
Pages : 238
Book Description
Providing a course of modern topology intended for biologists and physicists, this book presents a class of results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods; the structure of proteins; and other problems in molecular biology.
Knots, Molecules, and the Universe
Author: Erica Flapan
Publisher: American Mathematical Soc.
ISBN: 1470425351
Category : Mathematics
Languages : en
Pages : 406
Book Description
This book is an elementary introduction to geometric topology and its applications to chemistry, molecular biology, and cosmology. It does not assume any mathematical or scientific background, sophistication, or even motivation to study mathematics. It is meant to be fun and engaging while drawing students in to learn about fundamental topological and geometric ideas. Though the book can be read and enjoyed by nonmathematicians, college students, or even eager high school students, it is intended to be used as an undergraduate textbook. The book is divided into three parts corresponding to the three areas referred to in the title. Part 1 develops techniques that enable two- and three-dimensional creatures to visualize possible shapes for their universe and to use topological and geometric properties to distinguish one such space from another. Part 2 is an introduction to knot theory with an emphasis on invariants. Part 3 presents applications of topology and geometry to molecular symmetries, DNA, and proteins. Each chapter ends with exercises that allow for better understanding of the material. The style of the book is informal and lively. Though all of the definitions and theorems are explicitly stated, they are given in an intuitive rather than a rigorous form, with several hundreds of figures illustrating the exposition. This allows students to develop intuition about topology and geometry without getting bogged down in technical details.
Publisher: American Mathematical Soc.
ISBN: 1470425351
Category : Mathematics
Languages : en
Pages : 406
Book Description
This book is an elementary introduction to geometric topology and its applications to chemistry, molecular biology, and cosmology. It does not assume any mathematical or scientific background, sophistication, or even motivation to study mathematics. It is meant to be fun and engaging while drawing students in to learn about fundamental topological and geometric ideas. Though the book can be read and enjoyed by nonmathematicians, college students, or even eager high school students, it is intended to be used as an undergraduate textbook. The book is divided into three parts corresponding to the three areas referred to in the title. Part 1 develops techniques that enable two- and three-dimensional creatures to visualize possible shapes for their universe and to use topological and geometric properties to distinguish one such space from another. Part 2 is an introduction to knot theory with an emphasis on invariants. Part 3 presents applications of topology and geometry to molecular symmetries, DNA, and proteins. Each chapter ends with exercises that allow for better understanding of the material. The style of the book is informal and lively. Though all of the definitions and theorems are explicitly stated, they are given in an intuitive rather than a rigorous form, with several hundreds of figures illustrating the exposition. This allows students to develop intuition about topology and geometry without getting bogged down in technical details.
Color Atlas of Genetics
Author: Eberhard Passarge
Publisher: Thieme
ISBN: 9780865779587
Category : Genetics
Languages : en
Pages : 486
Book Description
Publisher: Thieme
ISBN: 9780865779587
Category : Genetics
Languages : en
Pages : 486
Book Description
Understanding DNA
Author: Chris R. Calladine
Publisher: Elsevier
ISBN: 0080474667
Category : Science
Languages : en
Pages : 349
Book Description
The functional properties of any molecule are directly related to, and affected by, its structure. This is especially true for DNA, the molecular that carries the code for all life on earth. The third edition of Understanding DNA has been entirely revised and updated, and expanded to cover new advances in our understanding. It explains, step by step, how DNA forms specific structures, the nature of these structures and how they fundamentally affect the biological processes of transcription and replication. Written in a clear, concise and lively fashion, Understanding DNA is essential reading for all molecular biology, biochemistry and genetics students, to newcomers to the field from other areas such as chemistry or physics, and even for seasoned researchers, who really want to understand DNA. - Describes the basic units of DNA and how these form the double helix, and the various types of DNA double helix - Outlines the methods used to study DNA structure - Contains over 130 illustrations, some in full color, as well as exercises and further readings to stimulate student comprehension
Publisher: Elsevier
ISBN: 0080474667
Category : Science
Languages : en
Pages : 349
Book Description
The functional properties of any molecule are directly related to, and affected by, its structure. This is especially true for DNA, the molecular that carries the code for all life on earth. The third edition of Understanding DNA has been entirely revised and updated, and expanded to cover new advances in our understanding. It explains, step by step, how DNA forms specific structures, the nature of these structures and how they fundamentally affect the biological processes of transcription and replication. Written in a clear, concise and lively fashion, Understanding DNA is essential reading for all molecular biology, biochemistry and genetics students, to newcomers to the field from other areas such as chemistry or physics, and even for seasoned researchers, who really want to understand DNA. - Describes the basic units of DNA and how these form the double helix, and the various types of DNA double helix - Outlines the methods used to study DNA structure - Contains over 130 illustrations, some in full color, as well as exercises and further readings to stimulate student comprehension
Topology and Physics of Circular DNA (1992)
Author: Alexander Vologodskii
Publisher: CRC Press
ISBN: 1351355821
Category : Medical
Languages : en
Pages : 303
Book Description
Topology and Physics of Circular DNA presents comprehensive coverage of the physical properties of circular DNA. The author examines how topological constraints arising from cyclization of DNA lead to distinctive properties that make closed molecules radically different from linear DNA. The phenomenon of supercoiling, its geometric and topological analysis, and the formation of noncanonical structures in circular DNA under the influence of supercoiling are emphasized. The combination of consistent theoretical analysis and detailed treatment of major experimental approaches make Topology and Physics of Circular DNA an important reference volume for biophysicists, biochemists, molecular biologists, and researchers and students who want to expand their understanding of circular DNA.
Publisher: CRC Press
ISBN: 1351355821
Category : Medical
Languages : en
Pages : 303
Book Description
Topology and Physics of Circular DNA presents comprehensive coverage of the physical properties of circular DNA. The author examines how topological constraints arising from cyclization of DNA lead to distinctive properties that make closed molecules radically different from linear DNA. The phenomenon of supercoiling, its geometric and topological analysis, and the formation of noncanonical structures in circular DNA under the influence of supercoiling are emphasized. The combination of consistent theoretical analysis and detailed treatment of major experimental approaches make Topology and Physics of Circular DNA an important reference volume for biophysicists, biochemists, molecular biologists, and researchers and students who want to expand their understanding of circular DNA.
When Topology Meets Chemistry
Author: Erica Flapan
Publisher: Cambridge University Press
ISBN: 1316583953
Category : Mathematics
Languages : en
Pages : 258
Book Description
The applications of topological techniques for understanding molecular structures have become increasingly important over the past thirty years. In this topology text, the reader will learn about knot theory, 3-dimensional manifolds, and the topology of embedded graphs, while learning the role these play in understanding molecular structures. Most of the results that are described in the text are motivated by questions asked by chemists or molecular biologists, though the results themselves often go beyond answering the original question asked. There is no specific mathematical or chemical prerequisite; all the relevant background is provided. The text is enhanced by nearly 200 illustrations and more than 100 exercises. Reading this fascinating book, undergraduate mathematics students can escape the world of pure abstract theory and enter that of real molecules, while chemists and biologists will find simple, clear but rigorous definitions of mathematical concepts they handle intuitively in their work.
Publisher: Cambridge University Press
ISBN: 1316583953
Category : Mathematics
Languages : en
Pages : 258
Book Description
The applications of topological techniques for understanding molecular structures have become increasingly important over the past thirty years. In this topology text, the reader will learn about knot theory, 3-dimensional manifolds, and the topology of embedded graphs, while learning the role these play in understanding molecular structures. Most of the results that are described in the text are motivated by questions asked by chemists or molecular biologists, though the results themselves often go beyond answering the original question asked. There is no specific mathematical or chemical prerequisite; all the relevant background is provided. The text is enhanced by nearly 200 illustrations and more than 100 exercises. Reading this fascinating book, undergraduate mathematics students can escape the world of pure abstract theory and enter that of real molecules, while chemists and biologists will find simple, clear but rigorous definitions of mathematical concepts they handle intuitively in their work.
Untangling the Double Helix
Author: James C. Wang
Publisher:
ISBN:
Category : DNA topoisomerases
Languages : en
Pages : 252
Book Description
The problem of unraveling two intertwined strands during the duplication of DNA was recognized shortly after the proposal of the DNA double helix structure in 1953. A group of enzymes called DNA topoisomerases solve this problem by breaking and rejoining DNA molecules in a controlled manner, thereby allowing strands to be passed through each other and thus untangled—not just during DNA replication, but also during many other basic cellular processes. Because of their intimate involvement in the workings of the cell, topoisomerases are also the logical targets of many antibiotics (including Cipro) and anticancer agents. This book, written by James Wang, the discoverer of the first topoisomerase and a leader in the field since, presents ten chapters covering the historical backdrop of the DNA entanglement problem and the discovery of the DNA topoisomerases, how DNA topoisomerases perform their magic in DNA replication, transcription, genetic recombination and chromosome condensation, and how they are targets of therapeutic agents. The book should appeal to readers from undergraduates upwards with interests in the biological and clinical aspects of topoisomerase function, or in the mathematics and physics of topology.
Publisher:
ISBN:
Category : DNA topoisomerases
Languages : en
Pages : 252
Book Description
The problem of unraveling two intertwined strands during the duplication of DNA was recognized shortly after the proposal of the DNA double helix structure in 1953. A group of enzymes called DNA topoisomerases solve this problem by breaking and rejoining DNA molecules in a controlled manner, thereby allowing strands to be passed through each other and thus untangled—not just during DNA replication, but also during many other basic cellular processes. Because of their intimate involvement in the workings of the cell, topoisomerases are also the logical targets of many antibiotics (including Cipro) and anticancer agents. This book, written by James Wang, the discoverer of the first topoisomerase and a leader in the field since, presents ten chapters covering the historical backdrop of the DNA entanglement problem and the discovery of the DNA topoisomerases, how DNA topoisomerases perform their magic in DNA replication, transcription, genetic recombination and chromosome condensation, and how they are targets of therapeutic agents. The book should appeal to readers from undergraduates upwards with interests in the biological and clinical aspects of topoisomerase function, or in the mathematics and physics of topology.
Mathematics of DNA Structure, Function and Interactions
Author: Craig John Benham
Publisher: Springer Science & Business Media
ISBN: 1441906703
Category : Medical
Languages : en
Pages : 356
Book Description
Propelled by the success of the sequencing of the human and many related genomes, molecular and cellular biology has delivered significant scientific breakthroughs. Mathematics (broadly defined) continues to play a major role in this effort, helping to discover the secrets of life by working collaboratively with bench biologists, chemists and physicists. Because of its outstanding record of interdisciplinary research and training, the IMA was an ideal venue for the 2007-2008 IMA thematic year on Mathematics of Molecular and Cellular Biology. The kickoff event for this thematic year was a tutorial on Mathematics of Nucleic Acids, followed by the workshop Mathematics of Molecular and Cellular Biology, held September 15--21 at the IMA. This volume is dedicated to the memory of Nicholas R. Cozzarelli, a dynamic leader who fostered research and training at the interface between mathematics and molecular biology. It contains a personal remembrance of Nick Cozzarelli, plus 15 papers contributed by workshop speakers. The papers give an overview of state-of-the-art mathematical approaches to the understanding of DNA structure and function, and the interaction of DNA with proteins that mediate vital life processes.
Publisher: Springer Science & Business Media
ISBN: 1441906703
Category : Medical
Languages : en
Pages : 356
Book Description
Propelled by the success of the sequencing of the human and many related genomes, molecular and cellular biology has delivered significant scientific breakthroughs. Mathematics (broadly defined) continues to play a major role in this effort, helping to discover the secrets of life by working collaboratively with bench biologists, chemists and physicists. Because of its outstanding record of interdisciplinary research and training, the IMA was an ideal venue for the 2007-2008 IMA thematic year on Mathematics of Molecular and Cellular Biology. The kickoff event for this thematic year was a tutorial on Mathematics of Nucleic Acids, followed by the workshop Mathematics of Molecular and Cellular Biology, held September 15--21 at the IMA. This volume is dedicated to the memory of Nicholas R. Cozzarelli, a dynamic leader who fostered research and training at the interface between mathematics and molecular biology. It contains a personal remembrance of Nick Cozzarelli, plus 15 papers contributed by workshop speakers. The papers give an overview of state-of-the-art mathematical approaches to the understanding of DNA structure and function, and the interaction of DNA with proteins that mediate vital life processes.