Multi-agent Optimization

Multi-agent Optimization PDF Author: Angelia Nedić
Publisher: Springer
ISBN: 3319971425
Category : Business & Economics
Languages : en
Pages : 317

Get Book Here

Book Description
This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.

Multi-agent Optimization

Multi-agent Optimization PDF Author: Angelia Nedić
Publisher: Springer
ISBN: 3319971425
Category : Business & Economics
Languages : en
Pages : 317

Get Book Here

Book Description
This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.

Parallel Optimization

Parallel Optimization PDF Author: Yair Censor
Publisher: Oxford University Press, USA
ISBN: 9780195100624
Category : Computers
Languages : en
Pages : 574

Get Book Here

Book Description
This book offers a unique pathway to methods of parallel optimization by introducing parallel computing ideas into both optimization theory and into some numerical algorithms for large-scale optimization problems. The three parts of the book bring together relevant theory, careful study of algorithms, and modeling of significant real world problems such as image reconstruction, radiation therapy treatment planning, financial planning, transportation and multi-commodity network flow problems, planning under uncertainty, and matrix balancing problems.

Intelligent Computing & Optimization

Intelligent Computing & Optimization PDF Author: Pandian Vasant
Publisher: Springer Nature
ISBN: 3030932478
Category : Technology & Engineering
Languages : en
Pages : 1020

Get Book Here

Book Description
This book includes the scientific results of the fourth edition of the International Conference on Intelligent Computing and Optimization which took place at December 30–31, 2021, via ZOOM. The conference objective was to celebrate “Compassion and Wisdom” with researchers, scholars, experts and investigators in Intelligent Computing and Optimization worldwide, to share knowledge, experience, innovation—marvelous opportunity for discourse and mutuality by novel research, invention and creativity. This proceedings encloses the original and innovative scientific fields of optimization and optimal control, renewable energy and sustainability, artificial intelligence and operational research, economics and management, smart cities and rural planning, meta-heuristics and big data analytics, cyber security and blockchains, IoTs and Industry 4.0, mathematical modelling and simulation, health care and medicine.

Uncertainty in Complex Networked Systems

Uncertainty in Complex Networked Systems PDF Author: Tamer Başar
Publisher: Springer
ISBN: 3030046303
Category : Science
Languages : en
Pages : 619

Get Book Here

Book Description
The chapters in this volume, and the volume itself, celebrate the life and research of Roberto Tempo, a leader in the study of complex networked systems, their analysis and control under uncertainty, and robust designs. Contributors include authorities on uncertainty in systems, robustness, networked and network systems, social networks, distributed and randomized algorithms, and multi-agent systems—all fields that Roberto Tempo made vital contributions to. Additionally, at least one author of each chapter was a research collaborator of Roberto Tempo’s. This volume is structured in three parts. The first covers robustness and includes topics like time-invariant uncertainties, robust static output feedback design, and the uncertainty quartet. The second part is focused on randomization and probabilistic methods, which covers topics such as compressive sensing, and stochastic optimization. Finally, the third part deals with distributed systems and algorithms, and explores matters involving mathematical sociology, fault diagnoses, and PageRank computation. Each chapter presents exposition, provides new results, and identifies fruitful future directions in research. This book will serve as a valuable reference volume to researchers interested in uncertainty, complexity, robustness, optimization, algorithms, and networked systems.

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence PDF Author: Nikos Kolobov
Publisher: Springer Nature
ISBN: 3031015436
Category : Computers
Languages : en
Pages : 71

Get Book Here

Book Description
Multiagent systems is an expanding field that blends classical fields like game theory and decentralized control with modern fields like computer science and machine learning. This monograph provides a concise introduction to the subject, covering the theoretical foundations as well as more recent developments in a coherent and readable manner. The text is centered on the concept of an agent as decision maker. Chapter 1 is a short introduction to the field of multiagent systems. Chapter 2 covers the basic theory of singleagent decision making under uncertainty. Chapter 3 is a brief introduction to game theory, explaining classical concepts like Nash equilibrium. Chapter 4 deals with the fundamental problem of coordinating a team of collaborative agents. Chapter 5 studies the problem of multiagent reasoning and decision making under partial observability. Chapter 6 focuses on the design of protocols that are stable against manipulations by self-interested agents. Chapter 7 provides a short introduction to the rapidly expanding field of multiagent reinforcement learning. The material can be used for teaching a half-semester course on multiagent systems covering, roughly, one chapter per lecture.

Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems

Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems PDF Author: Tatiana Tatarenko
Publisher: Springer
ISBN: 3319654799
Category : Science
Languages : en
Pages : 176

Get Book Here

Book Description
This book presents new efficient methods for optimization in realistic large-scale, multi-agent systems. These methods do not require the agents to have the full information about the system, but instead allow them to make their local decisions based only on the local information, possibly obtained during communication with their local neighbors. The book, primarily aimed at researchers in optimization and control, considers three different information settings in multi-agent systems: oracle-based, communication-based, and payoff-based. For each of these information types, an efficient optimization algorithm is developed, which leads the system to an optimal state. The optimization problems are set without such restrictive assumptions as convexity of the objective functions, complicated communication topologies, closed-form expressions for costs and utilities, and finiteness of the system’s state space.

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers PDF Author: Stephen Boyd
Publisher: Now Publishers Inc
ISBN: 160198460X
Category : Computers
Languages : en
Pages : 138

Get Book Here

Book Description
Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.

Distributed Optimization, Game and Learning Algorithms

Distributed Optimization, Game and Learning Algorithms PDF Author: Huiwei Wang
Publisher: Springer Nature
ISBN: 9813345284
Category : Technology & Engineering
Languages : en
Pages : 227

Get Book Here

Book Description
This book provides the fundamental theory of distributed optimization, game and learning. It includes those working directly in optimization,-and also many other issues like time-varying topology, communication delay, equality or inequality constraints,-and random projections. This book is meant for the researcher and engineer who uses distributed optimization, game and learning theory in fields like dynamic economic dispatch, demand response management and PHEV routing of smart grids.

Variable-Structure Systems and Sliding-Mode Control

Variable-Structure Systems and Sliding-Mode Control PDF Author: Martin Steinberger
Publisher: Springer Nature
ISBN: 3030366219
Category : Technology & Engineering
Languages : en
Pages : 463

Get Book Here

Book Description
The book covers the latest theoretical results and sophisticated applications in the field of variable-structure systems and sliding-mode control. This book is divided into four parts. Part I discusses new higher-order sliding-mode algorithms, including new homogeneous controllers and differentiators. Part II then explores properties of continuous sliding-mode algorithms, such as saturated feedback control, reaching time, and orbital stability. Part III is focused on the usage of variable-structure systems (VSS) controllers for solving other control problems, for example unmatched disturbances. Finally, Part IV discusses applications of VSS; these include applications within power electronics and vehicle platooning. Variable-structure Systems and Sliding-Mode Control will be of interest to academic researchers, students and practising engineers.

Distributed Optimization: Advances in Theories, Methods, and Applications

Distributed Optimization: Advances in Theories, Methods, and Applications PDF Author: Huaqing Li
Publisher: Springer Nature
ISBN: 9811561095
Category : Technology & Engineering
Languages : en
Pages : 257

Get Book Here

Book Description
This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike. Focusing on the natures and functions of agents, communication networks and algorithms in the context of distributed optimization for networked control systems, this book introduces readers to the background of distributed optimization; recent developments in distributed algorithms for various types of underlying communication networks; the implementation of computation-efficient and communication-efficient strategies in the execution of distributed algorithms; and the frameworks of convergence analysis and performance evaluation. On this basis, the book then thoroughly studies 1) distributed constrained optimization and the random sleep scheme, from an agent perspective; 2) asynchronous broadcast-based algorithms, event-triggered communication, quantized communication, unbalanced directed networks, and time-varying networks, from a communication network perspective; and 3) accelerated algorithms and stochastic gradient algorithms, from an algorithm perspective. Finally, the applications of distributed optimization in large-scale statistical learning, wireless sensor networks, and for optimal energy management in smart grids are discussed.