Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
ISBN: 1107097614
Category : Mathematics
Languages : en
Pages : 477
Book Description
The first comprehensive and up-to-date account of discriminant equations and their applications. For graduate students and researchers.
Discriminant Equations in Diophantine Number Theory
Unit Equations in Diophantine Number Theory
Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
ISBN: 1316432351
Category : Mathematics
Languages : en
Pages : 381
Book Description
Diophantine number theory is an active area that has seen tremendous growth over the past century, and in this theory unit equations play a central role. This comprehensive treatment is the first volume devoted to these equations. The authors gather together all the most important results and look at many different aspects, including effective results on unit equations over number fields, estimates on the number of solutions, analogues for function fields and effective results for unit equations over finitely generated domains. They also present a variety of applications. Introductory chapters provide the necessary background in algebraic number theory and function field theory, as well as an account of the required tools from Diophantine approximation and transcendence theory. This makes the book suitable for young researchers as well as experts who are looking for an up-to-date overview of the field.
Publisher: Cambridge University Press
ISBN: 1316432351
Category : Mathematics
Languages : en
Pages : 381
Book Description
Diophantine number theory is an active area that has seen tremendous growth over the past century, and in this theory unit equations play a central role. This comprehensive treatment is the first volume devoted to these equations. The authors gather together all the most important results and look at many different aspects, including effective results on unit equations over number fields, estimates on the number of solutions, analogues for function fields and effective results for unit equations over finitely generated domains. They also present a variety of applications. Introductory chapters provide the necessary background in algebraic number theory and function field theory, as well as an account of the required tools from Diophantine approximation and transcendence theory. This makes the book suitable for young researchers as well as experts who are looking for an up-to-date overview of the field.
Unit Equations in Diophantine Number Theory
Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
ISBN: 1107097606
Category : Mathematics
Languages : en
Pages : 381
Book Description
A comprehensive, graduate-level treatment of unit equations and their various applications.
Publisher: Cambridge University Press
ISBN: 1107097606
Category : Mathematics
Languages : en
Pages : 381
Book Description
A comprehensive, graduate-level treatment of unit equations and their various applications.
An Introduction to Diophantine Equations
Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350
Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350
Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Algebraic Number Theory and Diophantine Analysis
Author: F. Halter-Koch
Publisher: Walter de Gruyter
ISBN: 3110801957
Category : Mathematics
Languages : en
Pages : 573
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Publisher: Walter de Gruyter
ISBN: 3110801957
Category : Mathematics
Languages : en
Pages : 573
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Number Theory – Diophantine Problems, Uniform Distribution and Applications
Author: Christian Elsholtz
Publisher: Springer
ISBN: 3319553577
Category : Mathematics
Languages : en
Pages : 447
Book Description
This volume is dedicated to Robert F. Tichy on the occasion of his 60th birthday. Presenting 22 research and survey papers written by leading experts in their respective fields, it focuses on areas that align with Tichy’s research interests and which he significantly shaped, including Diophantine problems, asymptotic counting, uniform distribution and discrepancy of sequences (in theory and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.
Publisher: Springer
ISBN: 3319553577
Category : Mathematics
Languages : en
Pages : 447
Book Description
This volume is dedicated to Robert F. Tichy on the occasion of his 60th birthday. Presenting 22 research and survey papers written by leading experts in their respective fields, it focuses on areas that align with Tichy’s research interests and which he significantly shaped, including Diophantine problems, asymptotic counting, uniform distribution and discrepancy of sequences (in theory and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.
Diophantine Equations and Power Integral Bases
Author: István Gaál
Publisher: Springer Nature
ISBN: 3030238652
Category : Mathematics
Languages : en
Pages : 335
Book Description
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
Publisher: Springer Nature
ISBN: 3030238652
Category : Mathematics
Languages : en
Pages : 335
Book Description
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
Combinatorial and Additive Number Theory III
Author: Melvyn B. Nathanson
Publisher: Springer Nature
ISBN: 3030311066
Category : Mathematics
Languages : en
Pages : 237
Book Description
Based on talks from the 2017 and 2018 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 17 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, commutative algebra and discrete geometry, and applications of logic and nonstandard analysis to number theory. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
Publisher: Springer Nature
ISBN: 3030311066
Category : Mathematics
Languages : en
Pages : 237
Book Description
Based on talks from the 2017 and 2018 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 17 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, commutative algebra and discrete geometry, and applications of logic and nonstandard analysis to number theory. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
Effective Results and Methods for Diophantine Equations over Finitely Generated Domains
Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
ISBN: 1009050036
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book provides the first thorough treatment of effective results and methods for Diophantine equations over finitely generated domains. Compiling diverse results and techniques from papers written in recent decades, the text includes an in-depth analysis of classical equations including unit equations, Thue equations, hyper- and superelliptic equations, the Catalan equation, discriminant equations and decomposable form equations. The majority of results are proved in a quantitative form, giving effective bounds on the sizes of the solutions. The necessary techniques from Diophantine approximation and commutative algebra are all explained in detail without requiring any specialized knowledge on the topic, enabling readers from beginning graduate students to experts to prove effective finiteness results for various further classes of Diophantine equations.
Publisher: Cambridge University Press
ISBN: 1009050036
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book provides the first thorough treatment of effective results and methods for Diophantine equations over finitely generated domains. Compiling diverse results and techniques from papers written in recent decades, the text includes an in-depth analysis of classical equations including unit equations, Thue equations, hyper- and superelliptic equations, the Catalan equation, discriminant equations and decomposable form equations. The majority of results are proved in a quantitative form, giving effective bounds on the sizes of the solutions. The necessary techniques from Diophantine approximation and commutative algebra are all explained in detail without requiring any specialized knowledge on the topic, enabling readers from beginning graduate students to experts to prove effective finiteness results for various further classes of Diophantine equations.
Diophantine Equations Over Function Fields
Author: R. C. Mason
Publisher: Cambridge University Press
ISBN: 9780521269834
Category : Mathematics
Languages : en
Pages : 142
Book Description
A self-contained account of a new approach to the subject.
Publisher: Cambridge University Press
ISBN: 9780521269834
Category : Mathematics
Languages : en
Pages : 142
Book Description
A self-contained account of a new approach to the subject.