Development and Analysis of Computational Methods to Study Hydrogen Bonding in Molecular Clusters

Development and Analysis of Computational Methods to Study Hydrogen Bonding in Molecular Clusters PDF Author: Ryan J. DiRisio
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Understanding the role of hydrogen bonding in the structure and dynamics of water is an ongoing challenge in physical chemistry. In particular, understanding how the quantum mechanical effects of molecular vibrations govern the structure and dynamics of water is of interest. The cornerstone method used to study this phenomenon in this work is Diffusion Monte Carlo (DMC), which can be used to obtain the ground state vibrational wave function of any arbitrary molecule or molecular cluster. Instead of attempting to model bulk water and its properties outright, small, gas-phase molecular and ionic clusters of water, which provide model systems to study hydrogen bonding and proton transfer, are studied. To begin, DMC will be reviewed, and PyVibDMC, an open source, general purpose Python DMC software package developed as part of this work, will be discussed. As DMC is rigorously a ground state method, extensions to the DMC approach are required to obtain information about excited states. With excited state information, one can then directly compare simulation to experiment through theoretical and experimental spectroscopy. As such, next, the Ground State Probability Amplitude (GSPA) approximation is presented, and it is applied to protonated water clusters. In the GSPA approach, excited state wave functions are approximated based on simple products of polynomials of vibrational displacements with the ground state DMC wave function. The power of this approach is that one can construct a small basis through which to comprehensively examine the vibrational state space of the chemical system of interest. Extensions to the GSPA approach that incorporate excited state mixing and improved descriptions of higher-order excited states states will be presented as well. These improvements lead to good agreement between the GSPA theoretical and gas-phase experimental vibrational spectra of H7O3+ and H9O4+. Using this rich theoretical approach, we are able to draw connections between the molecular vibrations and structures that govern proton transfer and experimental spectroscopy of the clusters. A methodological procedure is presented next, which is the incorporation of machine learning into the DMC workflow. A potential energy surface is required for DMC simulations. Performing on-the-fly, ab initio potential energy calculations of molecular configurations in DMC simulations for systems beyond a few atoms is computationally intractable. As such, fitted potential energy surfaces are often employed for DMC simulations. However, as systems of interest increase in size, even the evaluations of these fitted surfaces become computationally demanding. To this end, a workflow is developed to use the large amount of data obtained from a small-scale DMC simulation to train a neural network to learn the potential energy surface of interest. Neural network structure, choice of descriptor, and hyperparameter optimization are reviewed and discussed in the context of other machine learning methods, and training data collection strategies are discussed, including the need to sample regions of the potential energy surface that are beyond regions accessed by a typical DMC simulation. Once the neural network surface is trained, it is evaluated in an extremely fast and highly-parallel manner, making DMC simulations significantly more efficient for H2O, CH5+, and (H2O)2. In the final section, DMC is set aside, and an exploration of the correlation between the vibrational spectral signature of an individual water molecule with its surrounding chemical environment is discussed. Specifically, the frequency of a hydrogen-bonded OH stretch in a water dimer pair is correlated to the number of solvating water molecules surrounding it. A quantum mechanical model is constructed to quantify this correlation, and applications of the model to a sample water cluster show the causality between the change in quantum mechanical electron density in the hydrogen bonding region of a particular OH bond and its OH stretch frequency. The application of the quantum model formalizes and explains empirical trends and categorization approaches put forth in previous work to characterize hydrogen bonding environments. This model is then applied to the water network found in a Cs+(H2O)20 cluster, where these trends are again quantified and then related to both the first and second solvation shell of a hydrogen-bond donor/acceptor water pair within the larger network.

Development and Analysis of Computational Methods to Study Hydrogen Bonding in Molecular Clusters

Development and Analysis of Computational Methods to Study Hydrogen Bonding in Molecular Clusters PDF Author: Ryan J. DiRisio
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Understanding the role of hydrogen bonding in the structure and dynamics of water is an ongoing challenge in physical chemistry. In particular, understanding how the quantum mechanical effects of molecular vibrations govern the structure and dynamics of water is of interest. The cornerstone method used to study this phenomenon in this work is Diffusion Monte Carlo (DMC), which can be used to obtain the ground state vibrational wave function of any arbitrary molecule or molecular cluster. Instead of attempting to model bulk water and its properties outright, small, gas-phase molecular and ionic clusters of water, which provide model systems to study hydrogen bonding and proton transfer, are studied. To begin, DMC will be reviewed, and PyVibDMC, an open source, general purpose Python DMC software package developed as part of this work, will be discussed. As DMC is rigorously a ground state method, extensions to the DMC approach are required to obtain information about excited states. With excited state information, one can then directly compare simulation to experiment through theoretical and experimental spectroscopy. As such, next, the Ground State Probability Amplitude (GSPA) approximation is presented, and it is applied to protonated water clusters. In the GSPA approach, excited state wave functions are approximated based on simple products of polynomials of vibrational displacements with the ground state DMC wave function. The power of this approach is that one can construct a small basis through which to comprehensively examine the vibrational state space of the chemical system of interest. Extensions to the GSPA approach that incorporate excited state mixing and improved descriptions of higher-order excited states states will be presented as well. These improvements lead to good agreement between the GSPA theoretical and gas-phase experimental vibrational spectra of H7O3+ and H9O4+. Using this rich theoretical approach, we are able to draw connections between the molecular vibrations and structures that govern proton transfer and experimental spectroscopy of the clusters. A methodological procedure is presented next, which is the incorporation of machine learning into the DMC workflow. A potential energy surface is required for DMC simulations. Performing on-the-fly, ab initio potential energy calculations of molecular configurations in DMC simulations for systems beyond a few atoms is computationally intractable. As such, fitted potential energy surfaces are often employed for DMC simulations. However, as systems of interest increase in size, even the evaluations of these fitted surfaces become computationally demanding. To this end, a workflow is developed to use the large amount of data obtained from a small-scale DMC simulation to train a neural network to learn the potential energy surface of interest. Neural network structure, choice of descriptor, and hyperparameter optimization are reviewed and discussed in the context of other machine learning methods, and training data collection strategies are discussed, including the need to sample regions of the potential energy surface that are beyond regions accessed by a typical DMC simulation. Once the neural network surface is trained, it is evaluated in an extremely fast and highly-parallel manner, making DMC simulations significantly more efficient for H2O, CH5+, and (H2O)2. In the final section, DMC is set aside, and an exploration of the correlation between the vibrational spectral signature of an individual water molecule with its surrounding chemical environment is discussed. Specifically, the frequency of a hydrogen-bonded OH stretch in a water dimer pair is correlated to the number of solvating water molecules surrounding it. A quantum mechanical model is constructed to quantify this correlation, and applications of the model to a sample water cluster show the causality between the change in quantum mechanical electron density in the hydrogen bonding region of a particular OH bond and its OH stretch frequency. The application of the quantum model formalizes and explains empirical trends and categorization approaches put forth in previous work to characterize hydrogen bonding environments. This model is then applied to the water network found in a Cs+(H2O)20 cluster, where these trends are again quantified and then related to both the first and second solvation shell of a hydrogen-bond donor/acceptor water pair within the larger network.

Spectroscopy and Computation of Hydrogen-BondedSystems

Spectroscopy and Computation of Hydrogen-BondedSystems PDF Author: Marek J. Wójcik
Publisher: John Wiley & Sons
ISBN: 3527349723
Category : Science
Languages : en
Pages : 548

Get Book Here

Book Description
Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways in enzyme catalysis and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.

Hydrogen Bonding - New Insights

Hydrogen Bonding - New Insights PDF Author: Slawomir Grabowski
Publisher: Springer Science & Business Media
ISBN: 140204853X
Category : Science
Languages : en
Pages : 536

Get Book Here

Book Description
This book uses examples from experimental studies to illustrate theoretical investigations, allowing greater understanding of hydrogen bonding phenomena. The most important topics in recent studies are covered. This volume is an invaluable resource that will be of particular interest to physical and theoretical chemists, spectroscopists, crystallographers and those involved with chemical physics.

Implications of Molecular and Materials Structure for New Technologies

Implications of Molecular and Materials Structure for New Technologies PDF Author: Judith A K Howard
Publisher: Springer Science & Business Media
ISBN: 9401146535
Category : Science
Languages : en
Pages : 363

Get Book Here

Book Description
Recent years have seen a dramatic increase in the use of crystal structure information and computational techniques in the design and development of a very wide range of novel materials. These activities now encompass a broad chemical spectrum, reflected in the contributions published here, which cover: modern crystallographic techniques, databases and knowledge bases of experimental results, computational techniques and their interplay with experimental information, hydrogen bonding and other intermolecular interactions, supramolecular assembly and crystal structure prediction, and practical examples of materials design. Each author is a recognised expert and the volume contains state-of-the-art results set in the context of essential background material and augmented by extensive bibliographies. The volume provides a coherent introduction to a rapidly developing field and will be of value to both specialists and non-specialists at the doctoral and post-doctoral levels.

Atomic Clusters with Unusual Structure, Bonding and Reactivity

Atomic Clusters with Unusual Structure, Bonding and Reactivity PDF Author: Pratim Kumar Chattaraj
Publisher: Elsevier
ISBN: 0128229438
Category : Science
Languages : en
Pages : 444

Get Book Here

Book Description
Atomic Clusters with Unusual Structure, Bonding and Reactivity: Theoretical Approaches, Computational Assessment and Applications reviews the latest computational tools and approaches available for accurately assessing the properties of a cluster, while also highlighting how such clusters can be adapted and utilized for the development of novel materials and applications. Sections provide an introduction to the computational methods used to obtain global minima for clusters and effectively analyze bonds, outline experimental approaches to produce clusters, discuss specific applications, and explore cluster reactivity and usage across a number of fields. Drawing on the knowledge of its expert editors and contributors, this book provides a detailed guide to ascertaining the stability, bonding and properties of atomic clusters. Atomic clusters, which exhibit unusual properties, offer huge potential as building blocks for new materials and novel applications, but understanding their properties, stability and bonding is essential in order to accurately understand, characterize and manipulate them for further use. Searching for the most stable geometry of a given cluster is difficult and becomes even more so for clusters of medium and large sizes, where the number of possible isomers sharply increase, hence this book provides a unique and comprehensive approach to the topic and available techniques and applications. Introduces readers to the vast structural and bonding diversity that clusters show and reflects on their potential for novel application and material development Highlights the latest computational methods and theoretical tools available for identification of the most stable isomers and accurate analysis of bonding in the clusters Focuses on clusters which violate the rules established in traditional chemistry and exhibit unusual structure, bonding and reactivity

Hydrogen bonding abilities of hydroxamic acid and its isosteres

Hydrogen bonding abilities of hydroxamic acid and its isosteres PDF Author: Ruchi Kohli
Publisher: Anchor Academic Publishing
ISBN: 3960675046
Category : Science
Languages : en
Pages : 396

Get Book Here

Book Description
This study comprises seven chapters. In chapter 1 an overview of chemistry, biological functions and literature studies of hydroxamic acids (HA) and its isosteres is presented. The principles of quantum mechanics underlying the computational methods employed to study HAs are given in brief. Chapter 2 describes intra- and intermolecular H-bonding interactions between formohydoxamic acid (FHA) and single water molecule and the dimerization among the isomeric forms. Chapter 3 involves the comparative study of H-bonding abilities of thioformohydoxamic acid (TFHA) and FHA. The deprotonation enthalpies of different sites of FHA and TFHA, probable pathways for interconversion among anions and their H-bonding with water are explored in chapter 4. The Effect of aqueous medium on deprotonation by using solvation methods is also discussed. Further insight into H-bonded aggregates and dimers of HAs is gained through the analysis of calculated stabilization energies and their comparison to similar H-bonded functionalities. The reasons behind the H-bond cooperativity in the aggregates and dimers are explored in chapter 5. Chapter 6 deals with the study of properties of formylphosphinous acid (FPA) isostere of FHA and a comparative study is carried out. In chapter 7, the aggregation of the most stable keto and enol conformer of FHA and TFHA with five amino acid side chain groups occurring at active sites of enzymes is studied.

Computational Study of Hydrogen Bonded Systems

Computational Study of Hydrogen Bonded Systems PDF Author: Jan Kazimirski
Publisher: LAP Lambert Academic Publishing
ISBN: 9783845408071
Category :
Languages : en
Pages : 148

Get Book Here

Book Description
Water is one of the most interesting chemical systems to study. Investigation of water clusters can help to understand unique properties of condensed phase and particulate H2O. One of the main problems encountered while studying these systems is the global minimum problem. The potential energy landscape of water clusters becomes more and more complicated with growing number of water molecules. In this work we use a combined approach to search of minima of water clusters. It is based on a combination of three different computational techniques. The first is based on classical molecular dynamics. The second algorithm is aimed at improving orientational structure of water molecules within a given cluster, using a Monte Carlo approach. The third algorithm is based on a Diffusion Monte Carlo method (DMC) combined with local minimization (i.e. PES deformation). The proposed approach is tested on TIP4P water cluster systems. The low energy structures obtained from our optimization scheme are used for analysis of the tendency of transition from amorphous (small clusters) toward ordered, crystal-like structures (big clusters).

Hydrogen Bond Research

Hydrogen Bond Research PDF Author: Peter Schuster
Publisher: Springer Science & Business Media
ISBN: 3709164192
Category : Science
Languages : en
Pages : 120

Get Book Here

Book Description
Seven review articles and original papers provide a representative overview of the research work done in hydrogen bond research at Austrian universities. The topics covered by the contributions are: state-of-the-art of understanding hydrogen bonding in biopolymers; recent NMR techniques for studying hydrogen bonding in aqueous solutions; intramolecular hydrogen bonding and proton transfer in a class of Mannich bases derived from substituted phenols and naphthols; competition between intramolecular hydrogen bonds in ortho-disubstituted phenols; molecular dynamic simulations on proton transfer in 5,8-dihydroxynaphthoquinone and in the formic acid dimer; accurate calculations of the intermolecular interactions in cyanoacetylen dimers; correlation between OH...O bond distances and OH stretching frequencies as derived from structural and spectroscopic data of minerals.

Analysis of Chemical Bonding in Clusters by Means of the Adaptive Natural Density Partitioning

Analysis of Chemical Bonding in Clusters by Means of the Adaptive Natural Density Partitioning PDF Author: Dmitry Yu Zubarev
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Get Book Here

Book Description
Models of chemical bonding are essential for contemporary chemistry. Even the explosive development of the computational resources including, both hardware and software, cannot eliminate necessity of compact, intuitive, and efficient methods of representing chemically relevant information. The Lewis model of chemical bonding, which was proposed eleven years before the formulation of quantum theory and preserves its pivotal role in chemical education and research for more than ninety years, is a vivid example of such a tool. As chemistry shifts to the nanoscale, it is becoming obvious that a certain shift of the paradigms of chemical bonding is inescapable. For example, none of the currently available models of chemical bonding can correctly predict structures and properties of sub-nano and nanoclusters. Clusters of main-group elements and transition metals are of major interest for nanotechnology with potential applications including catalysis, hydrogen storage, molecular conductors, drug development, nanodevices, etc. Thus, the goals of this dissertation were three-fold. Firstly, the dissertation introduces a novel approach to the description of chemical bonding and the algorithm of the software performing analysis of chemical bonding, which is called Adaptive Natural Density Partitioning. Secondly, the dissertation presents a series of studies of main-group element and transition-metal clusters in molecular beams, including obtaining their photoelectron spectra, establishing their structures, analyzing chemical bonding, and developing generalized model of chemical bonding. Thirdly, the dissertation clarifies and develops certain methodological aspects of the quantum chemical computations dealing with clusters. This includes appraisal of the performance of several computational methods based on the Density Functional Theory and the development of global optimization software based on the Particle Swarm Optimization algorithm.

Clusters

Clusters PDF Author: Minh Tho Nguyen
Publisher: Springer
ISBN: 3319489186
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
The field of atomic clusters continues to attract great interest amongst physicists and chemists alike. This is in part due to their intrinsic properties and potential industrial applications. The first part of Binary Clusters is devoted to recent developments in experimental techniques, the second part covers a variety of theoretical approaches. Different theoretical methods based on group/graph theories and quantum chemical computational methods as well as various spectroscopy techniques (such as mass, laser, infrared, photoelectron etc.) are applied to the determination of the existence of geometrical and electronic structures, chemical bonding phenomena, and the thermodynamic stabilities of several classes of binary clusters. All chapters within this review volume have been contributed by experts in chemistry, physics, and material sciences based at the University of Leuven, Belgium. This book is aimed at professionals and students working in cluster science.