Developing an Implementation Strategy for Virginia Department of Transportation Pavement Rehabilitation Design Using Mechanistic-Empirical Concepts

Developing an Implementation Strategy for Virginia Department of Transportation Pavement Rehabilitation Design Using Mechanistic-Empirical Concepts PDF Author: Harikrishnan Nair
Publisher:
ISBN:
Category : Pavements--Design and construction
Languages : en
Pages : 56

Get Book Here

Book Description
The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed with an objective to provide the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures. The Virginia Department of Transportation (VDOT) officially adopted the MEPDG for new construction for interstate and primary routes effective January 1, 2018. For rehabilitation design, VDOT currently uses an earlier-generation AASHTO guide, the 1993 Guide for Design of Pavement Structures, but expects eventually also to implement the MEPDG for the most common scenarios. To ensure a more effective overlay design, it is imperative to conduct a local calibration/validation of design procedures and to determine the proper material inputs for both the existing and any new pavement materials that may be used in the rehabilitation. The purpose of this study was to assist VDOT in the implementation of AASHTOWare Pavement ME Design software (hereinafter “Pavement ME Design”) for the design of overlays for existing flexible, rigid, and composite pavement. The study evaluated various input levels and the need for separate local calibration factors for rehabilitation of asphalt concrete (AC) over AC, AC over jointed concrete, and AC over continuously reinforced concrete pavements using Version 2.2.6 of Pavement ME Design. The study recommends implementation of the use of the current Version 2.2.6 for rehabilitation design only after a detailed sensitivity analysis with regard to various distresses using current calibration coefficients. Further, the study recommends the promotion of detailed forensic evaluation as part of rehabilitation design for restorative maintenance projects and that VDOT consider adopting V2.6 of Pavement ME Design for new and rehabilitation design.

Developing an Implementation Strategy for Virginia Department of Transportation Pavement Rehabilitation Design Using Mechanistic-Empirical Concepts

Developing an Implementation Strategy for Virginia Department of Transportation Pavement Rehabilitation Design Using Mechanistic-Empirical Concepts PDF Author: Harikrishnan Nair
Publisher:
ISBN:
Category : Pavements--Design and construction
Languages : en
Pages : 56

Get Book Here

Book Description
The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed with an objective to provide the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures. The Virginia Department of Transportation (VDOT) officially adopted the MEPDG for new construction for interstate and primary routes effective January 1, 2018. For rehabilitation design, VDOT currently uses an earlier-generation AASHTO guide, the 1993 Guide for Design of Pavement Structures, but expects eventually also to implement the MEPDG for the most common scenarios. To ensure a more effective overlay design, it is imperative to conduct a local calibration/validation of design procedures and to determine the proper material inputs for both the existing and any new pavement materials that may be used in the rehabilitation. The purpose of this study was to assist VDOT in the implementation of AASHTOWare Pavement ME Design software (hereinafter “Pavement ME Design”) for the design of overlays for existing flexible, rigid, and composite pavement. The study evaluated various input levels and the need for separate local calibration factors for rehabilitation of asphalt concrete (AC) over AC, AC over jointed concrete, and AC over continuously reinforced concrete pavements using Version 2.2.6 of Pavement ME Design. The study recommends implementation of the use of the current Version 2.2.6 for rehabilitation design only after a detailed sensitivity analysis with regard to various distresses using current calibration coefficients. Further, the study recommends the promotion of detailed forensic evaluation as part of rehabilitation design for restorative maintenance projects and that VDOT consider adopting V2.6 of Pavement ME Design for new and rehabilitation design.

Mechanistic-empirical Pavement Design Guide

Mechanistic-empirical Pavement Design Guide PDF Author: American Association of State Highway and Transportation Officials
Publisher: AASHTO
ISBN: 156051423X
Category : Pavements
Languages : en
Pages : 218

Get Book Here

Book Description


Implementation of the AASHTO Mechanistic-Empirical Design Guide (AASHTOWare Pavement ME Design) for Pavement Rehabilitation

Implementation of the AASHTO Mechanistic-Empirical Design Guide (AASHTOWare Pavement ME Design) for Pavement Rehabilitation PDF Author: Shuvo Islam
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The AASHTOWare Pavement ME Design (PMED) is a novel design method for new and rehabilitated pavement designs based on mechanistic-empirical design principles. The design process includes several empirical models calibrated with pavement performance data from pavement sections throughout the United States. Improved accuracy of the design process requires that the models be calibrated to local conditions. Therefore, the objective of this study was to implement the AASHTOWare PMED software for rehabilitated pavement design by performing local calibration for state-managed roads in Kansas, New Jersey, and Maine. Transfer functions for translating mechanistic pavement responses into visible distresses embedded in the AASHTOWare PMED software were locally calibrated to eliminate bias and reduce the standard error for rehabilitated pavements in Kansas and New York. Calibration was performed using version 2.5 and then verified with version 2.6.2.2, which was released in September 2022. Rehabilitated pavement sections included asphalt concrete (AC) over AC in Kansas and the New England region and jointed plain concrete pavement (JPCP) sections in Kansas. Because the PMED software requires periodic recalibration of the prediction models to account for improvements in the models, changes in agency design and construction strategies, and updates in performance data, this study also developed an automated technique for calibrating the AASHTOWare PMED software performance models. This automated methodology incorporated robust sampling techniques to verify calibrated PMED models. In addition, statistical equivalence testing was incorporated to ensure PMED-predicted performance results tended to agree with the in-situ data. A comparison of results for the AASHTOWare PMED versions 2.5 and 2.6.2.2 showed that most predicted distress values in Kansas remained the same, except for the predicted AC total fatigue cracking, specifically asphalt bottom-up fatigue cracking. For both distress types, slightly higher values were obtained with version 2.6.2.2. Results of three candidate crack tests showed that IDEAL-CT test results can be used as cracking-resistance criterion for mixtures in Kansas. The rehabilitation models were also successfully calibrated for the New England region.

Mechanistic-empirical Pavement Design Guide Implementation Plan

Mechanistic-empirical Pavement Design Guide Implementation Plan PDF Author: Todd E. Hoerner
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 324

Get Book Here

Book Description
As AASH is expected to eventually adopt the MEPDG at its primary pavement design method, it is critical that the SDDOT become familiar with the MEPGD documentation and associated design software. The research conducted under this project was a first step toward achieving this goal.

Development of Local Calibration Factors and Design Criteria Values for Mechanistic-empirical Pavement Design

Development of Local Calibration Factors and Design Criteria Values for Mechanistic-empirical Pavement Design PDF Author: Bryan Smith
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 0

Get Book Here

Book Description
A mechanistic-empirical (ME) pavement design procedure allows for analyzing and selecting pavement structures based on predicted distress progression resulting from stresses and strains within the pavement over its design life. The Virginia Department of Transportation (VDOT) has been working toward implementing ME design by characterizing traffic and materials inputs, training with the models and design software, and analyzing current pavement designs in AASHTOware Pavement ME Design software. This study compared the measured performance of asphalt and continuously reinforced concrete pavements (CRCP) from VDOTs Pavement Management System (PMS) records to the predicted performance in AASHTOware Pavement ME Design. Model coefficients in the software were adjusted to match the predicted asphalt pavement permanent deformation, asphalt bottom-up fatigue cracking, and CRCP punchout outputs to the measured values from PMS records. Values for reliability, design life inputs, and distress limits were identified as a starting point for VDOT to consider when using AASHTOware Pavement ME Design through consideration of national guidelines, existing VDOT standards, PMS rating formulas, typical pavement performance at time of overlay, and the data used for local calibration. The model calibration coefficients and design requirement values recommended in this study can be used by VDOT with AASHTOware Pavement ME Design as a starting point to implement the software for design, which should allow for more optimized pavement structures and improve the long-term performance of pavements in Virginia.

Implementation of the AASHTO Mechanistic-empirical Pavement Design Guide and Software

Implementation of the AASHTO Mechanistic-empirical Pavement Design Guide and Software PDF Author:
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 84

Get Book Here

Book Description
Introduction -- Mechanistic-Empirical Pavement Design Guide and AASHTOWare Pavement ME Design (TM) Software Overview -- Survey of Agency Pavement Design Practices -- Common Elements of Agency Implementation Plans -- Case Examples of Agency Implementation -- Conclusions.

Implementation of AASHTOWare Pavement ME Design Software for Pavement Rehabilitation

Implementation of AASHTOWare Pavement ME Design Software for Pavement Rehabilitation PDF Author: Shuvo Islam
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The 1993 version of the American Association of State Highway Transportation Officials (AASHTO) design guide has been the primary pavement design tool for state highway agencies in the United States. Recently, a mechanistic-empirical pavement design guide (MEPDG) has been developed for new and rehabilitated pavement design. MEPDG approaches have been incorporated into a proprietary design software (commonly known as AASHTOWare Pavement ME Design (PMED)) for new and rehabilitated pavement designs. The main objective of this study was to facilitate implementation of this AASHTOWare PMED software for rehabilitated pavement design in Kansas. As part of this implementation, transfer functions for translating mechanistic pavement responses into visible distresses embedded in the AASHTOWare PMED software were locally calibrated to eliminate bias and reduce standard error for rehabilitated pavements in Kansas. Rehabilitated pavement sections included asphalt concrete (AC) over AC and jointed plain concrete pavement (JPCP) sections. The PMED software requires periodic recalibration of the prediction models to account for improvements in the PMED models, changes in agency design and construction strategies, and updates in performance data. Thus, another objective of this study was to develop an automated technique for calibrating the AASHTOWare PMED software performance models. The automated methodology developed in this study incorporated robust sampling techniques to verify calibrated PMED models. In addition, a statistical equivalence testing approach was incorporated to ensure PMED-predicted performance results tend to agree with the in-situ data.

Functional Pavement Design

Functional Pavement Design PDF Author: Sandra Erkens
Publisher: CRC Press
ISBN: 1317285522
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
Functional Pavement Design is a collections of 186 papers from 27 different countries, which were presented at the 4th Chinese-European Workshops (CEW) on Functional Pavement Design (Delft, the Netherlands, 29 June-1 July 2016). The focus of the CEW series is on field tests, laboratory test methods and advanced analysis techniques, and cover analysis, material development and production, experimental characterization, design and construction of pavements. The main areas covered by the book include: - Flexible pavements - Pavement and bitumen - Pavement performance and LCCA - Pavement structures - Pavements and environment - Pavements and innovation - Rigid pavements - Safety - Traffic engineering Functional Pavement Design is for contributing to the establishment of a new generation of pavement design methodologies in which rational mechanics principles, advanced constitutive models and advanced material characterization techniques shall constitute the backbone of the design process. The book will be much of interest to professionals and academics in pavement engineering and related disciplines.

Analysis of the Mechanistic-empirical Pavement Design Guide Performance Predictions

Analysis of the Mechanistic-empirical Pavement Design Guide Performance Predictions PDF Author: Stacey D. Diefenderfer
Publisher:
ISBN:
Category : Binders (Materials)
Languages : en
Pages : 44

Get Book Here

Book Description
The Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures (MEPDG) is an improved methodology for pavement design and the evaluation of paving materials. The Virginia Department of Transportation (VDOT) is expecting to transition to using the MEPDG methodology in the near future. The purpose of this research was to support this implementation effort. A catalog of mixture properties from 11 asphalt mixtures (3 surface mixtures, 4 intermediate mixtures, and 4 base mixtures) was compiled along with the associated asphalt binder properties to provide input values. The predicted fatigue and rutting distresses were used to evaluate the sensitivity of the MEPDG software to differences in the mixture properties and to assess the future needs for implementation of the MEPDG. Two pavement sections were modeled: one on a primary roadway and one on an interstate roadway. The MEPDG was used with the default calibration factors. Pavement distress data were compiled for the interstate and primary route corresponding to the modeled sections and were compared to the MEPDG-predicted distresses. Predicted distress quantities for fatigue cracking and rutting were compared to the calculated distress model predictive errors to determine if there were significant differences between material property input levels. There were differences between all rutting and fatigue predictions using Level 1, 2, and 3 asphalt material inputs, although not statistically significant. Various combinations of Level 3 inputs showed expected trends in rutting predictions when increased binder grades were used, but the differences were not statistically significant when the calibration model error was considered. Pavement condition data indicated that fatigue distress predictions were approximately comparable to the pavement condition data for the interstate pavement structure, but fatigue was over-predicted for the primary route structure. Fatigue model predictive errors were greater than the distress predictions for all predictions. Based on the findings of this study, further refinement or calibration of the predictive models is necessary before the benefits associated with their use can be realized. A local calibration process should be performed to provide calibration and verification of the predictive models so that they may accurately predict the conditions of Virginia roadways. Until then, implementation using Level 3 inputs is recommended. If the models are modified, additional evaluation will be necessary to determine if the other recommendations of this study are impacted. Further studies should be performed using Level 1 and Level 2 input properties of additional asphalt mixtures to validate the trends seen in the Level 3 input predictions and isolate the effects of binder grade changes on the predicted distresses. Further, additional asphalt mixture and binder properties should be collected to populate fully a catalog for VDOT's future implementation use. The implementation of these recommendations and use of the MEPDG are expected to provide VDOT with a more efficient and effective means for pavement design and analysis. The use of optimal pavement designs will provide economic benefits in terms of initial construction and lifetime maintenance costs.

AASHTO Guide for Design of Pavement Structures, 1993

AASHTO Guide for Design of Pavement Structures, 1993 PDF Author: American Association of State Highway and Transportation Officials
Publisher: AASHTO
ISBN: 1560510552
Category : Pavements
Languages : en
Pages : 622

Get Book Here

Book Description
Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.