Design of High Performance and Low Power CMOS Switched-current Data Converters

Design of High Performance and Low Power CMOS Switched-current Data Converters PDF Author: Jin-Sheng Wang
Publisher:
ISBN:
Category : Electronic circuit design
Languages : en
Pages : 274

Get Book Here

Book Description

Design of High Performance and Low Power CMOS Switched-current Data Converters

Design of High Performance and Low Power CMOS Switched-current Data Converters PDF Author: Jin-Sheng Wang
Publisher:
ISBN:
Category : Electronic circuit design
Languages : en
Pages : 274

Get Book Here

Book Description


CMOS Data Converters for Communications

CMOS Data Converters for Communications PDF Author: Mikael Gustavsson
Publisher: Springer Science & Business Media
ISBN: 0306473054
Category : Technology & Engineering
Languages : en
Pages : 378

Get Book Here

Book Description
CMOS Data Converters for Communications distinguishes itself from other data converter books by emphasizing system-related aspects of the design and frequency-domain measures. It explains in detail how to derive data converter requirements for a given communication system (baseband, passband, and multi-carrier systems). The authors also review CMOS data converter architectures and discuss their suitability for communications. The rest of the book is dedicated to high-performance CMOS data converter architecture and circuit design. Pipelined ADCs, parallel ADCs with an improved passive sampling technique, and oversampling ADCs are the focus for ADC architectures, while current-steering DAC modeling and implementation are the focus for DAC architectures. The principles of the switched-current and the switched-capacitor techniques are reviewed and their applications to crucial functional blocks such as multiplying DACs and integrators are detailed. The book outlines the design of the basic building blocks such as operational amplifiers, comparators, and reference generators with emphasis on the practical aspects. To operate analog circuits at a reduced supply voltage, special circuit techniques are needed. Low-voltage techniques are also discussed in this book. CMOS Data Converters for Communications can be used as a reference book by analog circuit designers to understand the data converter requirements for communication applications. It can also be used by telecommunication system designers to understand the difficulties of certain performance requirements on data converters. It is also an excellent resource to prepare analog students for the new challenges ahead.

High-Performance D/A-Converters

High-Performance D/A-Converters PDF Author: Martin Clara
Publisher: Springer Science & Business Media
ISBN: 3642312292
Category : Technology & Engineering
Languages : en
Pages : 297

Get Book Here

Book Description
This book deals with modeling and implementation of high performance, current-steering D/A-converters for digital transceivers in nanometer CMOS technology. In the first part, the fundamental performance limitations of current-steering DACs are discussed. Based on simplified models, closed-form expressions for a number of basic non-ideal effects are derived and tested. With the knowledge of basic performance limits, the converter and system architecture can be optimized in an early design phase, trading off circuit complexity, silicon area and power dissipation for static and dynamic performance. The second part describes four different current-steering DAC designs in standard 130 nm CMOS. The converters have a resolution in the range of 12-14 bits for an analog bandwidth between 2.2 MHz and 50 MHz and sampling rates from 100 MHz to 350 MHz. Dynamic-Element-Matching (DEM) and advanced dynamic current calibration techniques are employed to minimize the required silicon area.

Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters

Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters PDF Author: Vincenzo Peluso
Publisher: Springer Science & Business Media
ISBN: 1475729782
Category : Technology & Engineering
Languages : en
Pages : 178

Get Book Here

Book Description
Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters investigates the feasibility of designing Delta-Sigma Analog to Digital Converters for very low supply voltage (lower than 1.5V) and low power operation in standard CMOS processes. The chosen technique of implementation is the Switched Opamp Technique which provides Switched Capacitor operation at low supply voltage without the need to apply voltage multipliers or low VtMOST devices. A method of implementing the classic single loop and cascaded Delta-Sigma modulator topologies with half delay integrators is presented. Those topologies are studied in order to find the parameters that maximise the performance in terms of peak SNR. Based on a linear model, the performance degradations of higher order single loop and cascaded modulators, compared to a hypothetical ideal modulator, are quantified. An overview of low voltage Switched Capacitor design techniques, such as the use of voltage multipliers, low VtMOST devices and the Switched Opamp Technique, is given. An in-depth discussion of the present status of the Switched Opamp Technique covers the single-ended Original Switched Opamp Technique, the Modified Switched Opamp Technique, which allows lower supply voltage operation, and differential implementation including common mode control techniques. The restrictions imposed on the analog circuits by low supply voltage operation are investigated. Several low voltage circuit building blocks, some of which are new, are discussed. A new low voltage class AB OTA, especially suited for differential Switched Opamp applications, together with a common mode feedback amplifier and a comparator are presented and analyzed. As part of a systematic top-down design approach, the non-ideal charge transfer of the Switched Opamp integrator cell is modeled, based upon several models of the main opamp non-ideal characteristics. Behavioral simulations carried out with these models yield the required opamp specifications that ensure that the intended performance is met in an implementation. A power consumption analysis is performed. The influence of all design parameters, especially the low power supply voltage, is highlighted. Design guidelines towards low power operation are distilled. Two implementations are presented together with measurement results. The first one is a single-ended implementation of a Delta-Sigma ADC operating with 1.5V supply voltage and consuming 100 &mgr;W for a 74 dB dynamic range in a 3.4 kHz bandwidth. The second implementation is differential and operates with 900 mV. It achieves 77 dB dynamic range in 16 kHz bandwidth and consumes 40 &mgr;W. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters is essential reading for analog design engineers and researchers.

Low Power High Resolution Data Converter in Digital CMOS Technology

Low Power High Resolution Data Converter in Digital CMOS Technology PDF Author: Zhiliang Zheng
Publisher:
ISBN:
Category : Analog-to-digital converters
Languages : en
Pages : 118

Get Book Here

Book Description
The advance of digital IC technology has been very fast, as shown by rapid development of DSP, digital communication and digital VLSI. Within electronic signal processing, analog-to-digital conversion is a key function, which converts the analog signal into digital form for further processing. Recently, low-voltage and low-power have become also an important factors in IC development. This thesis investigates some novel techniques for the design of low-power high-performance A/D converters in CMOS technology, and the non-ideal switched-capacitor effects of (SC) circuits. A new successive-approximation A/D converter is proposed with a novel error cancellation scheme. This A/D converter needs only a simple opamp, a comparator, and a few switches and capacitors. It can achieve high resolution with relative low power consumption. A new ratio-independent cyclic A/D converter is also proposed with techniques to compensate for the non-ideal effects. The implementation include a new differential sampling that is used to achieve ratio-independent multiple-by-two operation. Extensive simulations were performed to demonstrate the excellent performance of these data converters.

High-Resolution and High-Speed Integrated CMOS AD Converters for Low-Power Applications

High-Resolution and High-Speed Integrated CMOS AD Converters for Low-Power Applications PDF Author: Weitao Li
Publisher: Springer
ISBN: 3319620126
Category : Technology & Engineering
Languages : en
Pages : 181

Get Book Here

Book Description
This book is a step-by-step tutorial on how to design a low-power, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) integrated CMOS analog-to-digital (AD) converter, to respond to the challenge from the rapid growth of IoT. The discussion includes design techniques on both the system level and the circuit block level. In the architecture level, the power-efficient pipelined AD converter, the hybrid AD converter and the time-interleaved AD converter are described. In the circuit block level, the reference voltage buffer, the opamp, the comparator, and the calibration are presented. Readers designing low-power and high-performance AD converters won’t want to miss this invaluable reference. Provides an in-depth introduction to the newest design techniques for the power-efficient, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) AD converter; Presents three types of power-efficient architectures of the high-resolution and high-speed AD converter; Discusses the relevant circuit blocks (i.e., the reference voltage buffer, the opamp, and the comparator) in two aspects, relaxing the requirements and improving the performance.

Low-Power High-Resolution Analog to Digital Converters

Low-Power High-Resolution Analog to Digital Converters PDF Author: Amir Zjajo
Publisher: Springer Science & Business Media
ISBN: 9048197252
Category : Technology & Engineering
Languages : en
Pages : 311

Get Book Here

Book Description
With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. This has recently generated a great demand for low-power, low-voltage A/D converters that can be realized in a mainstream deep-submicron CMOS technology. However, the discrepancies between lithography wavelengths and circuit feature sizes are increasing. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. The inherent randomness of materials used in fabrication at nanoscopic scales means that performance will be increasingly variable, not only from die-to-die but also within each individual die. Parametric variability will be compounded by degradation in nanoscale integrated circuits resulting in instability of parameters over time, eventually leading to the development of faults. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. In an attempt to address these issues, Low-Power High-Resolution Analog-to-Digital Converters specifically focus on: i) improving the power efficiency for the high-speed, and low spurious spectral A/D conversion performance by exploring the potential of low-voltage analog design and calibration techniques, respectively, and ii) development of circuit techniques and algorithms to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover errors continuously. The feasibility of the described methods has been verified by measurements from the silicon prototypes fabricated in standard 180nm, 90nm and 65nm CMOS technology.

CMOS Telecom Data Converters

CMOS Telecom Data Converters PDF Author: Angel Rodríguez-Vázquez
Publisher: Springer Science & Business Media
ISBN: 1475737246
Category : Technology & Engineering
Languages : en
Pages : 610

Get Book Here

Book Description
CMOS Telecom Data Converters compiles the latest achievements regarding the design of high-speed and high-resolution data converters in deep submicron CMOS technologies. The four types of analog-to-digital converter architectures commonly found in this arena are covered, namely sigma-delta, pipeline, folding/interpolating and flash. For all these types, latest achievements regarding the solution of critical architectural and circuital issues are presented, and illustrated through IC prototypes with measured state-of-the-art performances. Some of these prototypes are conceived to be employed at the chipset of newest generation wireline modems (ADSL and ADSL+). Others are intended for wireless transceivers. Besides analog-to-digital converters, the book also covers other functions needed for communication systems, such as digital-to-analog converters, analog filters, programmable gain amplifiers, digital filters, and line drivers.

High Performance CMOS Switched-current Circuits for Low-voltage Signal Processing Applications

High Performance CMOS Switched-current Circuits for Low-voltage Signal Processing Applications PDF Author: Renyuan Huang
Publisher:
ISBN:
Category : Integrated circuits
Languages : en
Pages : 280

Get Book Here

Book Description


Design of Low-Voltage CMOS Switched-Opamp Switched-Capacitor Systems

Design of Low-Voltage CMOS Switched-Opamp Switched-Capacitor Systems PDF Author: Vincent S.L. Cheung
Publisher: Springer Science & Business Media
ISBN: 1475737017
Category : Technology & Engineering
Languages : en
Pages : 207

Get Book Here

Book Description
This volume emphasizes the design and development of advanced switched-opamp architectures and techniques for low-voltage low-power switched-capacitor systems. It presents a novel multi-phase switched-opamp technique together with new system architectures that are critical in improving significantly the performance of switched-capacitor systems at low supply voltages.