Demystifying AI for the Enterprise

Demystifying AI for the Enterprise PDF Author: Prashant Natarajan
Publisher: CRC Press
ISBN: 1351032933
Category : Computers
Languages : en
Pages : 433

Get Book Here

Book Description
Artificial intelligence (AI) in its various forms –– machine learning, chatbots, robots, agents, etc. –– is increasingly being seen as a core component of enterprise business workflow and information management systems. The current promise and hype around AI are being driven by software vendors, academic research projects, and startups. However, we posit that the greatest promise and potential for AI lies in the enterprise with its applications touching all organizational facets. With increasing business process and workflow maturity, coupled with recent trends in cloud computing, datafication, IoT, cybersecurity, and advanced analytics, there is an understanding that the challenges of tomorrow cannot be solely addressed by today’s people, processes, and products. There is still considerable mystery, hype, and fear about AI in today’s world. A considerable amount of current discourse focuses on a dystopian future that could adversely affect humanity. Such opinions, with understandable fear of the unknown, don’t consider the history of human innovation, the current state of business and technology, or the primarily augmentative nature of tomorrow’s AI. This book demystifies AI for the enterprise. It takes readers from the basics (definitions, state-of-the-art, etc.) to a multi-industry journey, and concludes with expert advice on everything an organization must do to succeed. Along the way, we debunk myths, provide practical pointers, and include best practices with applicable vignettes. AI brings to enterprise the capabilities that promise new ways by which professionals can address both mundane and interesting challenges more efficiently, effectively, and collaboratively (with humans). The opportunity for tomorrow’s enterprise is to augment existing teams and resources with the power of AI in order to gain competitive advantage, discover new business models, establish or optimize new revenues, and achieve better customer and user satisfaction.

Demystifying AI for the Enterprise

Demystifying AI for the Enterprise PDF Author: Prashant Natarajan
Publisher: CRC Press
ISBN: 1351032933
Category : Computers
Languages : en
Pages : 433

Get Book Here

Book Description
Artificial intelligence (AI) in its various forms –– machine learning, chatbots, robots, agents, etc. –– is increasingly being seen as a core component of enterprise business workflow and information management systems. The current promise and hype around AI are being driven by software vendors, academic research projects, and startups. However, we posit that the greatest promise and potential for AI lies in the enterprise with its applications touching all organizational facets. With increasing business process and workflow maturity, coupled with recent trends in cloud computing, datafication, IoT, cybersecurity, and advanced analytics, there is an understanding that the challenges of tomorrow cannot be solely addressed by today’s people, processes, and products. There is still considerable mystery, hype, and fear about AI in today’s world. A considerable amount of current discourse focuses on a dystopian future that could adversely affect humanity. Such opinions, with understandable fear of the unknown, don’t consider the history of human innovation, the current state of business and technology, or the primarily augmentative nature of tomorrow’s AI. This book demystifies AI for the enterprise. It takes readers from the basics (definitions, state-of-the-art, etc.) to a multi-industry journey, and concludes with expert advice on everything an organization must do to succeed. Along the way, we debunk myths, provide practical pointers, and include best practices with applicable vignettes. AI brings to enterprise the capabilities that promise new ways by which professionals can address both mundane and interesting challenges more efficiently, effectively, and collaboratively (with humans). The opportunity for tomorrow’s enterprise is to augment existing teams and resources with the power of AI in order to gain competitive advantage, discover new business models, establish or optimize new revenues, and achieve better customer and user satisfaction.

The AI Ladder

The AI Ladder PDF Author: Rob Thomas
Publisher: "O'Reilly Media, Inc."
ISBN: 1492073385
Category : Computers
Languages : en
Pages : 219

Get Book Here

Book Description
AI may be the greatest opportunity of our time, with the potential to add nearly $16 trillion to the global economy over the next decade. But so far, adoption has been much slower than anticipated, or so headlines may lead you to believe. With this practical guide, business leaders will discover where they are in their AI journey and learn the steps necessary to successfully scale AI throughout their organization. Authors Rob Thomas and Paul Zikopoulos from IBM introduce C-suite executives and business professionals to the AI Ladder—a unified, prescriptive approach to help them understand and accelerate the AI journey. Complete with real-world examples and real-life experiences, this book explores AI drivers, value, and opportunity, as well as the adoption challenges organizations face. Understand why you can’t have AI without an information architecture (IA) Appreciate how AI is as much a cultural change as it is a technological one Collect data and make it simple and accessible, regardless of where it lives Organize data to create a business-ready analytics foundation Analyze data, and build and scale AI with trust and transparency Infuse AI throughout your entire business and create intelligent workflows

Demystifying Big Data and Machine Learning for Healthcare

Demystifying Big Data and Machine Learning for Healthcare PDF Author: Prashant Natarajan
Publisher: CRC Press
ISBN: 1315389304
Category : Medical
Languages : en
Pages : 227

Get Book Here

Book Description
Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Enterprise AI For Dummies

Enterprise AI For Dummies PDF Author: Zachary Jarvinen
Publisher: John Wiley & Sons
ISBN: 1119696399
Category : Business & Economics
Languages : en
Pages : 359

Get Book Here

Book Description
Master the application of artificial intelligence in your enterprise with the book series trusted by millions In Enterprise AI For Dummies, author Zachary Jarvinen simplifies and explains to readers the complicated world of artificial intelligence for business. Using practical examples, concrete applications, and straightforward prose, the author breaks down the fundamental and advanced topics that form the core of business AI. Written for executives, managers, employees, consultants, and students with an interest in the business applications of artificial intelligence, Enterprise AI For Dummies demystifies the sometimes confusing topic of artificial intelligence. No longer will you lag behind your colleagues and friends when discussing the benefits of AI and business. The book includes discussions of AI applications, including: Streamlining business operations Improving decision making Increasing automation Maximizing revenue The For Dummies series makes topics understandable, and as such, this book is written in an easily understood style that's perfect for anyone who seeks an introduction to a usually unforgiving topic.

AI For Lawyers

AI For Lawyers PDF Author: Noah Waisberg
Publisher: John Wiley & Sons
ISBN: 1119723892
Category : Business & Economics
Languages : en
Pages : 205

Get Book Here

Book Description
Discover how artificial intelligence can improve how your organization practices law with this compelling resource from the creators of one of the world’s leading legal AI platforms. AI for Lawyers: How Artificial Intelligence is Adding Value, Amplifying Expertise, and Transforming Careers explains how artificial intelligence can be used to revolutionize your organization’s operations. Noah Waisberg and Dr. Alexander Hudek, a lawyer and a computer science Ph.D. who lead prominent legal AI business Kira Systems, have written an approachable and insightful book that will help you transform how your firm functions. AI for Lawyers explains how artificial intelligence can help your law firm: Win more business and find more clients Better meet and exceed client expectations Find hidden efficiencies Better manage and eliminate risk Increase associate and partner engagement Whether focusing on small or big law, AI for Lawyers is perfect for any lawyer who either feels uneasy about how AI might change law or is looking to capitalize on the evolving practice. With contributions from experts in the fields of e-Discovery, legal research, expert systems, and litigation analytics, it also belongs on the bookshelf of anyone who’s interested in the intersection of law and technology.

Demystifying OWL for the Enterprise

Demystifying OWL for the Enterprise PDF Author: Michael Uschold
Publisher: Morgan & Claypool Publishers
ISBN: 1681731282
Category : Computers
Languages : en
Pages : 263

Get Book Here

Book Description
The purpose of this book is to speed up the processing of learning and mastering the Web Ontology Language OWL. To that end, the focus is on the 30% of OWL that gets used 90% of the time. After a slow incubation period of nearly 15 years, a large and growing number of organizations now have one or more projects using the Semantic Web stack of technologies. The Web Ontology Language (OWL) is an essential ingredient in this stack, and the need for ontologists is increasing faster than the number and variety of available resources for learning OWL. This is especially true for the primary target audience for this book: modelers who want to build OWL ontologies for practical use in enterprise and government settings. Others who may benefit from this book include technically oriented managers, semantic technology developers, undergraduate and post-graduate students, and finally, instructors looking for new ways to explain OWL. The book unfolds in a spiral manner, starting with the core ideas. Each subsequent cycle reinforces and expands on what has been learned in prior cycles and introduces new related ideas. Part 1 is a cook's tour of ontology and OWL, giving an informal overview of what things need to be said to build an ontology, followed by a detailed look at how to say them in OWL. This is illustrated using a healthcare example. Part 1 concludes with an explanation of some foundational ideas about meaning and semantics to prepare the reader for subsequent chapters. Part 2 goes into depth on properties and classes, which are the core of OWL. There are detailed descriptions of the main constructs that you are likely to need in every day modeling, including what inferences are sanctioned. Each is illustrated with real-world examples. Part 3 explains and illustrates how to put OWL into practice, using examples in healthcare, collateral, and financial transactions. A small ontology is described for each, along with some key inferences. Key limitations of OWL are identified, along with possible workarounds. The final chapter gives a variety of practical tips and guidelines to send the reader on their way.

Python Deep Learning Projects

Python Deep Learning Projects PDF Author: Matthew Lamons
Publisher: Packt Publishing Ltd
ISBN: 1789134757
Category : Computers
Languages : en
Pages : 465

Get Book Here

Book Description
Insightful projects to master deep learning and neural network architectures using Python and Keras Key FeaturesExplore deep learning across computer vision, natural language processing (NLP), and image processingDiscover best practices for the training of deep neural networks and their deploymentAccess popular deep learning models as well as widely used neural network architecturesBook Description Deep learning has been gradually revolutionizing every field of artificial intelligence, making application development easier. Python Deep Learning Projects imparts all the knowledge needed to implement complex deep learning projects in the field of computational linguistics and computer vision. Each of these projects is unique, helping you progressively master the subject. You’ll learn how to implement a text classifier system using a recurrent neural network (RNN) model and optimize it to understand the shortcomings you might experience while implementing a simple deep learning system. Similarly, you’ll discover how to develop various projects, including word vector representation, open domain question answering, and building chatbots using seq-to-seq models and language modeling. In addition to this, you’ll cover advanced concepts, such as regularization, gradient clipping, gradient normalization, and bidirectional RNNs, through a series of engaging projects. By the end of this book, you will have gained knowledge to develop your own deep learning systems in a straightforward way and in an efficient way What you will learnSet up a deep learning development environment on Amazon Web Services (AWS)Apply GPU-powered instances as well as the deep learning AMIImplement seq-to-seq networks for modeling natural language processing (NLP)Develop an end-to-end speech recognition systemBuild a system for pixel-wise semantic labeling of an imageCreate a system that generates images and their regionsWho this book is for Python Deep Learning Projects is for you if you want to get insights into deep learning, data science, and artificial intelligence. This book is also for those who want to break into deep learning and develop their own AI projects. It is assumed that you have sound knowledge of Python programming

Big Data Demystified

Big Data Demystified PDF Author: David Stephenson
Publisher: Pearson UK
ISBN: 1292218126
Category : Business & Economics
Languages : en
Pages : 178

Get Book Here

Book Description
The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed. 'Big Data' refers to a new class of data, to which 'big' doesn't quite do it justice. Much like an ocean is more than simply a deeper swimming pool, big data is fundamentally different to traditional data and needs a whole new approach. Packed with examples and case studies, this clear, comprehensive book will show you how to accumulate and utilise 'big data' in order to develop your business strategy. Big Data Demystified is your practical guide to help you draw deeper insights from the vast information at your fingertips; you will be able to understand customer motivations, speed up production lines, and even offer personalised experiences to each and every customer. With 20 years of industry experience, David Stephenson shows how big data can give you the best competitive edge, and why it is integral to the future of your business.

Enterprise Search

Enterprise Search PDF Author: Martin White
Publisher: "O'Reilly Media, Inc."
ISBN: 149191551X
Category : Computers
Languages : en
Pages : 308

Get Book Here

Book Description
Is your organization rapidly accumulating more information than you know how to manage? This updated edition helps you create an enterprise search solution based on more than just technology. Author Martin White shows you how to plan and implement a managed search environment that meets the needs of your business and your employees. Learn why it's vital to have a dedicated staff manage your search technology and support your users.

Agile Machine Learning with DataRobot

Agile Machine Learning with DataRobot PDF Author: Bipin Chadha
Publisher: Packt Publishing Ltd
ISBN: 1801078645
Category : Computers
Languages : en
Pages : 345

Get Book Here

Book Description
Leverage DataRobot's enterprise AI platform and automated decision intelligence to extract business value from data Key FeaturesGet well-versed with DataRobot features using real-world examplesUse this all-in-one platform to build, monitor, and deploy ML models for handling the entire production life cycleMake use of advanced DataRobot capabilities to programmatically build and deploy a large number of ML modelsBook Description DataRobot enables data science teams to become more efficient and productive. This book helps you to address machine learning (ML) challenges with DataRobot's enterprise platform, enabling you to extract business value from data and rapidly create commercial impact for your organization. You'll begin by learning how to use DataRobot's features to perform data prep and cleansing tasks automatically. The book then covers best practices for building and deploying ML models, along with challenges faced while scaling them to handle complex business problems. Moving on, you'll perform exploratory data analysis (EDA) tasks to prepare your data to build ML models and ways to interpret results. You'll also discover how to analyze the model's predictions and turn them into actionable insights for business users. Next, you'll create model documentation for internal as well as compliance purposes and learn how the model gets deployed as an API. In addition, you'll find out how to operationalize and monitor the model's performance. Finally, you'll work with examples on time series forecasting, NLP, image processing, MLOps, and more using advanced DataRobot capabilities. By the end of this book, you'll have learned to use DataRobot's AutoML and MLOps features to scale ML model building by avoiding repetitive tasks and common errors. What you will learnUnderstand and solve business problems using DataRobotUse DataRobot to prepare your data and perform various data analysis tasks to start building modelsDevelop robust ML models and assess their results correctly before deploymentExplore various DataRobot functions and outputs to help you understand the models and select the one that best solves the business problemAnalyze a model's predictions and turn them into actionable insights for business usersUnderstand how DataRobot helps in governing, deploying, and maintaining ML modelsWho this book is for This book is for data scientists, data analysts, and data enthusiasts looking for a practical guide to building and deploying robust machine learning models using DataRobot. Experienced data scientists will also find this book helpful for rapidly exploring, building, and deploying a broader range of models. The book assumes a basic understanding of machine learning.